下面是范文網(wǎng)會員“qpoul469”整理的數(shù)列知識點(diǎn)歸納總結(jié)(共7篇),以供參考。
高考數(shù)學(xué)重要知識點(diǎn)內(nèi)容歸納總結(jié) 篇1
易錯點(diǎn)1 遺忘空集致誤
錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況??占且粋€特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導(dǎo)致解題錯誤或是解題不全面。
易錯點(diǎn)2 忽視集合元素的三性致誤
錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。
易錯點(diǎn)3 四種命題的結(jié)構(gòu)不明致誤
錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。
易錯點(diǎn)4 充分必要條件顛倒致誤
錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。
易錯點(diǎn)5 邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤
錯因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。 函數(shù)與導(dǎo)數(shù)
易錯點(diǎn)6 求函數(shù)定義域忽視細(xì)節(jié)致誤
錯因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時要注意下面幾點(diǎn):
(1)分母不為0;
(2)偶次被開放式非負(fù);
3)真數(shù)大于0;
(4)0的0次冪沒有意義。
函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時不要忘記了這點(diǎn)。對于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
易錯點(diǎn)7 帶有絕對值的函數(shù)單調(diào)性判斷錯誤
錯因分析:帶有絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:
一是在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對各個段上的單調(diào)區(qū)間進(jìn)行整合;
二是畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時要時時刻刻想到函數(shù)的圖象,學(xué)會從函數(shù)圖象上去分析問題,尋找解決問題的方案。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
易錯點(diǎn)8 求函數(shù)奇偶性的常見錯誤
錯因分析:求函數(shù)奇偶性的常見錯誤有求錯函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)?。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時要注意自變量在定義域區(qū)間內(nèi)的任意性。
易錯點(diǎn)9 抽象函數(shù)中推理不嚴(yán)密致誤
錯因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計出來的,在解決問題時,可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個不變性質(zhì)往往是進(jìn)一步解決問題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。
易錯點(diǎn)10 函數(shù)零點(diǎn)定理使用不當(dāng)致誤
錯因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。函數(shù)的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時要注意這個問題。
易錯點(diǎn)11 混淆兩類切線致誤
錯因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個點(diǎn)的切線是指過這個點(diǎn)的曲線的所有切線,這個點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
易錯點(diǎn)12 混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯因分析:對于一個函數(shù)在某個區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會出錯。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意:一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
易錯點(diǎn)13 導(dǎo)數(shù)與極值關(guān)系不清致誤
錯因分析:在使用導(dǎo)數(shù)求函數(shù)極值時,很容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。出現(xiàn)這些錯誤的原因是對導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個點(diǎn)處的導(dǎo)函數(shù)值為零只是這個函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時一定要注意對極值點(diǎn)進(jìn)行檢驗(yàn)。
易錯點(diǎn)14 用錯基本公式致誤
錯因分析:等差數(shù)列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項為a1、公比為q,則其通項公式an=a1pn-1,當(dāng)公比q≠1時,前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時,前n項和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。 易錯點(diǎn)15 an,Sn關(guān)系不清致誤
高中數(shù)列知識點(diǎn)總結(jié)熱門 篇2
高中數(shù)列知識點(diǎn)總結(jié)
高中數(shù)列知識點(diǎn)總結(jié)
1、高二數(shù)學(xué)數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項。
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列。
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,…。
(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n。
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別。如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合。
2、高二數(shù)學(xué)數(shù)列的分類
(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列。在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列。
(2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列。
3、高二數(shù)學(xué)數(shù)列的通項公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是唯一的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非唯一。如:數(shù)列1,2,3,4,…,由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循。
再強(qiáng)調(diào)對于數(shù)列通項公式的理解注意以下幾點(diǎn):
(1)數(shù)列的通項公式實(shí)際上是一個以正整數(shù)集N*或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式。
(2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項。
(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式。
如2的不足近似值,精確到1,0。1,0。01,0。001,0。000 1,…所構(gòu)成的數(shù)列1,1。4,1。41,1。414,1。414 2,…就沒有通項公式。
(4)有的數(shù)列的通項公式,形式上不一定是唯一的,正如舉例中的:
(5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不唯一。
4、高二數(shù)學(xué)數(shù)列的圖象
對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應(yīng)關(guān)系:
序號:1 2 3 4 5 6 7
項: 4 5 6 7 8 9 10
這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射。因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個定義域?yàn)檎疦*(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時,對應(yīng)的一列函數(shù)值。這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù)。
由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應(yīng)函數(shù)和解析式。
數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的。
數(shù)列用圖象來表示,可以以序號為橫坐標(biāo),相應(yīng)的項為縱坐標(biāo),描點(diǎn)畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確。
把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點(diǎn)。
5、高二數(shù)學(xué)遞推數(shù)列
高中化學(xué)知識點(diǎn)總結(jié)歸納 篇3
高一數(shù)列知識點(diǎn)總結(jié)
等差數(shù)列公式
等差數(shù)列的通項公式為:an=a1+(n-1)d
或an=am+(n-m)d
前n項和公式為:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2
若m+n=2p則:am+an=2ap
以上n均為正整數(shù)
第n項的值=首項+(項數(shù)-1)*公差
前n項的和=(首項+末項)*項數(shù)/2
公差=后項-前項
等比數(shù)列公式
等比數(shù)列求和公式
(1) 等比數(shù)列:a (n+1)/an=q (n∈N)。
(2) 通項公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m);
(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項數(shù))
(4)性質(zhì):
①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;
②在等比數(shù)列中,依次每 k項之和仍成等比數(shù)列.③若m、n、q∈N,且m+n=2q,則am×an=aq^2
(5)“G是a、b的等比中項”“G^2=ab(G ≠ 0)”.(6)在等比數(shù)列中,首項a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項。
等比數(shù)列求和公式推導(dǎo): Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。
高中歷史知識點(diǎn)總結(jié)歸納 篇4
高中數(shù)學(xué)數(shù)列知識點(diǎn)
數(shù)列的函數(shù)理解:
①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域?yàn)檎麛?shù)集N或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。②用函數(shù)的觀點(diǎn)認(rèn)識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。
通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關(guān)系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式(注:通項公式不)。
數(shù)列通項公式的特點(diǎn):
(1)有些數(shù)列的通項公式可以有不同形式,即不。
(2)有些數(shù)列沒有通項公式(如:素數(shù)由小到大排成一列2,3,5,7,11,...)。
遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。
數(shù)列遞推公式特點(diǎn):
(1)有些數(shù)列的遞推公式可以有不同形式,即不。
(2)有些數(shù)列沒有遞推公式。
有遞推公式不一定有通項公式。
注:數(shù)列中的項必須是數(shù),它可以是實(shí)數(shù),也可以是復(fù)數(shù)。
等差數(shù)列通項公式
an=a1+(n-1)d
n=1時a1=S1
n≥2時an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
等差中項
由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
前n項和
倒序相加法推導(dǎo)前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
等差數(shù)列性質(zhì)
一、任意兩項am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式。
二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N
三、若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。
怎么樣提高數(shù)學(xué)成績
首先想要提升數(shù)學(xué)成績,成為數(shù)學(xué)學(xué)霸的前提是要對數(shù)學(xué)有良好的學(xué)習(xí)興趣。其次要學(xué)會課前預(yù)習(xí),方便自己能夠更加深入的吃透課堂上的知識點(diǎn)。然后還要學(xué)會總結(jié)復(fù)習(xí),總結(jié)自己課堂上的問題,復(fù)習(xí)課堂上的重要知識點(diǎn),從而提高自己的數(shù)學(xué)成績。
提升數(shù)學(xué)成績還要擁有一個錯題本,和數(shù)學(xué)資料。認(rèn)真對待自己的學(xué)習(xí)工具,多做練習(xí)題,找出自己的薄弱環(huán)節(jié)和自己常犯的題型,記在錯題本上,常練習(xí),常鞏固。在自己的數(shù)學(xué)資料中摸索出適合自己的解題技巧,反復(fù)練習(xí)加以運(yùn)用,一定會提升你的數(shù)學(xué)成績。
學(xué)會聽課,在課堂上勇于提問。數(shù)學(xué)最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數(shù)學(xué)課本,為自己打下一個好基礎(chǔ),這樣才能更有效的提升你的數(shù)學(xué)成績。學(xué)會做課堂筆記,把每節(jié)課的重要知識點(diǎn)記下來,以便接下來的復(fù)習(xí)。
學(xué)好數(shù)學(xué)的方法技巧整理
預(yù)習(xí)的方法
上課之前一定要抽時間進(jìn)行預(yù)習(xí),有時預(yù)習(xí)比做作業(yè)更重要,因?yàn)橥ㄟ^預(yù)習(xí)我們可以初步掌握課程的大致內(nèi)容,聽課就能夠把握好重點(diǎn),針對性比較強(qiáng),還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業(yè)也會更好更快,最終會形成良性循環(huán)。
聽懂課的習(xí)慣
注意聽教師每節(jié)課強(qiáng)調(diào)的學(xué)習(xí)重點(diǎn),注意聽對定理、公式、法則的引入與推導(dǎo)的方法和過程,注意聽對例題關(guān)鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點(diǎn),沿著知識的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉(zhuǎn)變?yōu)椤皶牎薄?/p>
不斷練習(xí)
不斷練習(xí)是指多做數(shù)學(xué)練習(xí)題。希望學(xué)好數(shù)學(xué),多做練習(xí)是必不可少的。做練習(xí)的原因有以下三點(diǎn):第一,熟練和鞏固學(xué)到的數(shù)學(xué)知識;二,引導(dǎo)同學(xué)靈活運(yùn)用所學(xué)知識點(diǎn)以及獨(dú)立思考獨(dú)立做題的水平;第三,融會貫通。通過做題將所學(xué)的所有知識點(diǎn)結(jié)合起來,加深同學(xué)對數(shù)學(xué)體系化的理解。
物理知識點(diǎn)總結(jié) 篇5
物理九年級上冊歐姆定律知識點(diǎn)總結(jié)
1. I=U/R(歐姆定律:導(dǎo)體中的電流跟導(dǎo)體兩端電壓成正比,跟導(dǎo)體的電阻成反比)
2. I=I1=I2=…=In (串聯(lián)電路中電流的特點(diǎn):電流處處相等)
3. U=U1+U2+…+Un (串聯(lián)電路中電壓的特點(diǎn):串聯(lián)電路中,總電壓等于各部分電路兩端電壓之和)
4. I=I1+I2+…+In (并聯(lián)電路中電流的特點(diǎn):干路上的電流等于各支路電流之和)
5. U=U1=U2=…=Un (并聯(lián)電路中電壓的特點(diǎn):各支路兩端電壓相等。都等于電源電壓)
6. R=R1+R2+…+Rn (串聯(lián)電路中電阻的特點(diǎn):總電阻等于各部分電路電阻之和)
7. 1/R=1/R1+1/R2+…+1/Rn (并聯(lián)電路中電阻的特點(diǎn):總電阻的倒數(shù)等于各并聯(lián)電阻的倒數(shù)之和)
8. R并= R/n(n個相同電阻并聯(lián)時求總電阻的公式)
9. R串=nR (n個相同電阻串聯(lián)時求總電阻的公式)
10. U1:U2=R1:R2 (串聯(lián)電路中電壓與電阻的關(guān)系:電壓之比等于它們所對應(yīng)的電阻之比)
11. I1:I2=R2:R1 (并聯(lián)電路中電流與電阻的關(guān)系:電流之比等于它們所對應(yīng)的電阻的反比)
物理學(xué)習(xí)方法有哪些
1、重視定義和公式
初中生要想學(xué)好物理一定要重視定義和公式。在學(xué)習(xí)物理時,我們經(jīng)常用到的有很多公式,有些公式表面沒有什么聯(lián)系,但是內(nèi)在是有一些聯(lián)系的,如果我們經(jīng)常進(jìn)行公式的推導(dǎo),找出這些公式的內(nèi)在聯(lián)系,那么我們在做題時就會非常的順手。
2、重視知識點(diǎn)之間的聯(lián)系
初中生學(xué)好物理的方法之一就是重視知識點(diǎn)之間的聯(lián)系,相比其他學(xué)科,物理各個知識間的聯(lián)系性更強(qiáng),考試卷子試題非常綜合,即在同一道題中會考察到多個考點(diǎn)。比如,很多學(xué)生在學(xué)習(xí)電功率這部分內(nèi)容時總覺得很難,這是因?yàn)殡姽β实暮芏鄦栴},需要與歐姆定律結(jié)合起來使用,還需要把不同的電路狀態(tài)分析清楚,也就是說電路到底是串聯(lián)還是并聯(lián),因此要重視物理知識點(diǎn)之間的聯(lián)系。
3、學(xué)會總結(jié)和積累
要想學(xué)好物理一定要學(xué)會總結(jié)和積累。物理是一門積累的科目,要善于從錯誤中吸取經(jīng)驗(yàn)。也要積累平時做題的經(jīng)驗(yàn),一層一層地積累之后,相信物理對你而言并不難。其實(shí)物理有許多解題的技巧,一般的輔導(dǎo)書上都會有,你也可以自己找出技巧,掌握了這些方法你將更進(jìn)一步。
4、重視畫圖和識圖
學(xué)習(xí)物理離不開圖形,從運(yùn)用力學(xué)知識的機(jī)械設(shè)計到運(yùn)用電磁學(xué)知識的復(fù)雜電路設(shè)計,都是主要依靠“圖形語言”來表述的。知識的條理化,分析解決問題的思路等問題,用通常意義上的語言或文字表達(dá)都是有局限性和低效率的。所以,按照科學(xué)的方法動手畫圖是學(xué)習(xí)物理的重要方法,所以初中生要想學(xué)好物理,一定要會畫圖和識圖。
物理密度公式
(ρ水=×103kg/ m3)
冰與水之間狀態(tài)發(fā)生變化時m水=m冰 ρ水>ρ冰 v水
同一個容器裝滿不同的液體時,不同液體的體積相等,密度大的質(zhì)量大
空心球空心部分體積V空=V總-V實(shí)
知識點(diǎn)總結(jié) 篇6
知識點(diǎn)一:設(shè)計分析
合理的設(shè)計分析是成功地進(jìn)行技術(shù)設(shè)計的關(guān)鍵一步,分析得當(dāng)可以指引以后的技術(shù)上可以少走或不走彎路。
產(chǎn)品本身是一個整體,包括功能、造型、材料等,但任何產(chǎn)品都不是孤立存在的,一方面,它是為人服務(wù)的,人的需求在很大程度上決定著產(chǎn)品的設(shè)計;另一方面,它是在一定的環(huán)境中使用的,必然受到環(huán)境的制約,并對環(huán)境產(chǎn)生影響。因此,設(shè)計任何產(chǎn)品都應(yīng)綜合考慮物、人、環(huán)境三個方面。詳見書本P95臺燈分析的例子。
知識點(diǎn)二:方案的構(gòu)思方法
方案的構(gòu)思是指人們在一定的調(diào)查研究和設(shè)計分析的基礎(chǔ)上,通過思考將客觀存在的各要素按照一定的規(guī)律架構(gòu)起來,形成一個完成的抽象物,并采用圖、模型、語言、文字等方式呈現(xiàn)思維過程。
方案的構(gòu)思過程中,考慮到的許多問題是模糊的、零散的、不系統(tǒng)的,而且也是不具體的,怎樣把這些模糊的、零散的、不系統(tǒng)的設(shè)計想法變成我們能看到的、比較完整的具體方案呢這就需要一定的方法
(1)草圖法
設(shè)計時,我們可以運(yùn)用草圖法進(jìn)行構(gòu)思。草圖不僅能將一些想法明確地表達(dá)出來,而且可以隨意修改。在運(yùn)用草圖法進(jìn)行構(gòu)思的過程中,學(xué)生可以捕捉靈感、自由發(fā)揮、不受約束。
(2)模仿法
模仿現(xiàn)實(shí)生活中存在的一些事物進(jìn)行方案的構(gòu)思。如仿生技術(shù)
(3)聯(lián)想法
要用聯(lián)想的方法進(jìn)行方案的構(gòu)思,人們就必須具備豐富的實(shí)踐經(jīng)驗(yàn)、較廣的見識、較好的知識基礎(chǔ)及豐富的想象力。
利用聯(lián)想法進(jìn)行方案的構(gòu)思,不一定能使技術(shù)設(shè)計一次性成功,但它有可能為構(gòu)思找到一種方法或一條形成方案的路徑。運(yùn)用聯(lián)想法進(jìn)行構(gòu)思后,我們不能盲目地實(shí)踐,而應(yīng)該首先對方案進(jìn)行科學(xué)論證,而后再進(jìn)行制作和實(shí)施。
(4)奇特性構(gòu)思法
奇特性構(gòu)思法所形成的方案一般具有原創(chuàng)性。這些構(gòu)思在歷史上很少發(fā)生,或從來沒有發(fā)生過,甚至有些構(gòu)思在當(dāng)前的科學(xué)、技術(shù)、經(jīng)濟(jì)條件下無法實(shí)現(xiàn)。
知識點(diǎn)三:方案的比較和權(quán)衡
在多個方案經(jīng)構(gòu)思形成后,我們往往要對這些方案進(jìn)行評判和比較,同時要從設(shè)計的目的出發(fā),針對一些相互制約的問題進(jìn)行權(quán)衡和決策,最后選出較為滿意的方案或集中各方案的優(yōu)點(diǎn)進(jìn)行改進(jìn)。
對方案進(jìn)行比較和權(quán)衡的過程是一個綜合考慮的過程,各個指標(biāo)并不是獨(dú)立的,它們相互關(guān)聯(lián)、相互制約。抓住設(shè)計的核心與關(guān)鍵是權(quán)衡設(shè)計方案的必要條件。
考慮的方面:實(shí)用、美觀、創(chuàng)新、穩(wěn)定性、安全性、環(huán)保性、加工難易程度、經(jīng)濟(jì)成本。
極限知識點(diǎn)總結(jié) 篇7
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次項系數(shù)必須化為1
(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0
若b2-4ac>0則有兩個不相等的實(shí)根,若b2-4ac=0則有兩個相等的實(shí)根,若b2-4ac<0則無解
若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
②運(yùn)用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
③十字相乘法
2、銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、兩角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
數(shù)列知識點(diǎn)歸納總結(jié)相關(guān)文章: