亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全5篇 高一數(shù)學(xué)必修一各章知識點總結(jié)

時間:2022-11-07 09:37:00 工作總結(jié)

  下面是范文網(wǎng)小編整理的高一數(shù)學(xué)必修一知識點總結(jié)歸納大全5篇 高一數(shù)學(xué)必修一各章知識點總結(jié),供大家參考。

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全5篇 高一數(shù)學(xué)必修一各章知識點總結(jié)

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全1

  二次函數(shù)

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全2

  對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  右圖給出對于不同大小a所表示的函數(shù)圖形:

  可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

  (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

  (2)對數(shù)函數(shù)的`值域為全部實數(shù)集合。

  (3)函數(shù)總是通過(1,0)這點。

  (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

  (5)顯然對數(shù)函數(shù)。

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全3

  1、集合的含義:

  “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

  所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個集合,每一個同學(xué)就稱為這個集合的元素。

  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

  整數(shù)集Z有理數(shù)集Q實數(shù)集R

  集合的表示方法:列舉法與描述法。

 ?、倭信e法:{a,b,c……}

  ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 ?、壅Z言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強調(diào):描述法表示集合應(yīng)注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

  3、集合的三個特性

  (1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

  (2)互異性

  指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全4

  指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  【函數(shù)的應(yīng)用】

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:

  方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

  1(代數(shù)法)求方程的實數(shù)根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全5

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

  當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

 ?、谶^兩點的直線的斜率公式:

  注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.

  (3)直線方程

 ?、冱c斜式:直線斜率k,且過點

  注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

 ?、谛苯厥剑?直線斜率為k,直線在y軸上的截距為b

 ?、蹆牲c式:()直線兩點,

 ?、芙鼐厥剑?/p>

  其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

 ?、菀话闶剑?A,B不全為0)

  注意:各式的適用范圍特殊的方程如:

  平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (三)過定點的直線系

  (ⅰ)斜率為k的直線系:,直線過定點;

  (ⅱ)過兩條直線,的交點的直線系方程為

  (為參數(shù)),其中直線不在直線系中.

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

  (7)兩條直線的交點

  相交

  交點坐標(biāo)即方程組的一組解.

  方程組無解;方程組有無數(shù)解與重合

  (8)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點

  (9)點到直線距離公式:一點到直線的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解.

高一數(shù)學(xué)必修一知識點總結(jié)歸納大全5篇 高一數(shù)學(xué)必修一各章知識點總結(jié)相關(guān)文章:

一年級數(shù)學(xué)教師工作總結(jié)范本3篇 小學(xué)一年級數(shù)學(xué)教師學(xué)期工作總結(jié)

高一讀書心得有感大全3篇(高一讀書感悟)

八年級數(shù)學(xué)個人總結(jié)3篇 8年級數(shù)學(xué)總結(jié)

介紹荔枝高一作文3篇(荔枝寫作文)

高一感恩教師節(jié)作文大全7篇 感恩教師節(jié)作文高中

小學(xué)數(shù)學(xué)教師的述職報告9篇 小學(xué)數(shù)學(xué)教師述職簡短

數(shù)學(xué)課題階段性總結(jié)4篇(小學(xué)數(shù)學(xué)課題階段性總結(jié)報告)

高一語文上學(xué)期教學(xué)工作總結(jié)3篇 高一語文老師學(xué)期工作總結(jié)

高一新生入團申請書4篇(入團志愿申請書高一新生)

2022數(shù)學(xué)學(xué)科工作計劃3篇(小學(xué)數(shù)學(xué)工作計劃-)