亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

初中數(shù)學知識點總結 8篇(人教版初中數(shù)學知識點總結)

時間:2023-09-29 18:54:00 工作總結

  下面是范文網小編整理的初中數(shù)學知識點總結 8篇(人教版初中數(shù)學知識點總結),供大家參考。

初中數(shù)學知識點總結 8篇(人教版初中數(shù)學知識點總結)

初中數(shù)學知識點總結 1

  1、一元二次方程解法:

  (1)配方法:(X±a)2=b(b≥0)注:二次項系數(shù)必須化為1

  (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

  若b2-4ac>0則有兩個不相等的實根,若b2-4ac=0則有兩個相等的'實根,若b2-4ac<0則無解

  若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

  (3)分解因式法

 ?、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

  平方差公式:a2-b2=0→(a+b)(a-b)=0

 ?、谶\用公式法:

  完全平方公式:a2±2ab+b2=0→(a±b)2=0

 ?、凼窒喑朔?/p>

  2、銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  3、積的關系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  5、兩角和差公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

初中數(shù)學知識點總結 2

 ?、僦本€和圓無公共點,稱相離。 AB與圓O相離,d>r。

 ?、谥本€和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

  ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的'距離)

  平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的方程

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

  當x=-C/Ax2時,直線與圓相離;

初中數(shù)學知識點總結 3

  第二章整式的加減

  2、1整式

  1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù)、單項式指的是數(shù)或字母的積的代數(shù)式、單獨一個數(shù)或一個字母也是單項式、因此,判斷代數(shù)式是否是單項式,關鍵要看代數(shù)式中數(shù)與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式、

  2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);

  3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和、

  4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關鍵要看代數(shù)式中的每一項是否是單項式、每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質符號、

  5、它們都是用字母表示數(shù)或列式表示數(shù)量關系。注意單項式和多項式的每一項都包括它前面的符號。

  6、單項式和多項式統(tǒng)稱為整式。

  2、2整式的`加減

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關。

  2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可、同類項與系數(shù)大小、字母的排列順序無關

  3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

 ?。?)如果遇到括號按去括號法則先去括號、(2)結合同類項、(3)合并同類項葫蘆島

初中數(shù)學知識點總結 4

  誘導公式的本質

  所謂三角函數(shù)誘導公式,就是將角n(/2)的三角函數(shù)轉化為角的三角函數(shù)。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的同一三角函數(shù)的.值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數(shù)值之間的關系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

初中數(shù)學知識點總結 5

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質:⑴矩形具有平行四邊形的一切性質;

 ?、屏庑蔚乃臈l邊都相等;

 ?、橇庑蔚膬蓷l對角線互相垂直,并且每一條對角線平分一組對角。

 ?、攘庑问禽S對稱圖形。

  提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。

  3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)

  5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  6、公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

  8、平方根表示法:一個非負數(shù)a的平方根記作,讀作正負根號a。a叫被開方數(shù)。

  9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

  10、平方根性質:①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負數(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。

  11、平方根與算術平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。

  12、聯(lián)系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0

  13、含根號式子的意義:表示a的平方根,表示a的.算術平方根,表示a的負的平方根。

  14、求正數(shù)a的算術平方根的方法;

  完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

  求正數(shù)a的算術平方根,只需找出平方后等于a的正數(shù)。

初中數(shù)學知識點總結 6

  1、正數(shù)和負數(shù)的有關概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側,表示負數(shù)的點在原點的左側。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的'符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的兩數(shù)相加:當兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負因數(shù)的個數(shù)確定:當負因數(shù)有奇數(shù)個時,積為負;

  當負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

初中數(shù)學知識點總結 7

  一、函數(shù)及其相關概念

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點

  (1)解析法

  兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對應值

  (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  二、相交線與平行線

  1、知識網絡結構

  2、知識要點

 ?。?)在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的.一種特殊情況。

 ?。?)在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

 ?。?)兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是

  鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,

  與互為鄰補角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=; =。

  4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

  其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。

  垂線的性質:

  性質1:過一點有且只有一條直線與已知直線垂直。

  性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

  性質3:如圖2所示,當a⊥b時,====90°。

  點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

  5、同位角、內錯角、同旁內角基本特征:

  在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

  在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。

  三、實數(shù)

  1、實數(shù)的分類

 ?。?)按定義分類:

 ?。?)按性質符號分類:

  注:0既不是正數(shù)也不是負數(shù).

  2、實數(shù)的相關概念

 ?。?)相反數(shù)

 ?、俅鷶?shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.

 ?、趲缀我饬x:在數(shù)軸上原點的兩側,與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱.

  ③互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

 ?。?)絕對值|a|≥0.

  (3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù).

 ?。?)平方根

 ?、偃绻粋€數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根.a(a≥0)的平方根記作.

 ?、谝粋€正數(shù)a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作.

 ?。?)立方根

  如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.

  3、實數(shù)與數(shù)軸

  數(shù)軸定義:規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

  4、實數(shù)大小的比較

 ?。?)對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.

 ?。?)正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小.

  (3)無理數(shù)的比較大?。?/p>

初中數(shù)學知識點總結 8

  一、平移變換:

  1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

  2。性質:(1)平移前后圖形全等;

 ?。?)對應點連線平行或在同一直線上且相等。

  3。平移的作圖步驟和方法:

 ?。?)分清題目要求,確定平移的方向和平移的距離;

  (2)分析所作的圖形,找出構成圖形的關健點;

 ?。?)沿一定的方向,按一定的距離平移各個關健點;

 ?。?)連接所作的'各個關鍵點,并標上相應的字母;

 ?。?)寫出結論。

  二、旋轉變換:

  1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

  說明:

 ?。?)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

  (2)旋轉過程中旋轉中心始終保持不動。

 ?。?)旋轉過程中旋轉的方向是相同的。

  (4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

  2。性質:

 ?。?)對應點到旋轉中心的距離相等;

  (2)對應點與旋轉中心所連線段的夾角等于旋轉角;

 ?。?)旋轉前、后的圖形全等。

  3。旋轉作圖的步驟和方法:

 ?。?)確定旋轉中心及旋轉方向、旋轉角;

  (2)找出圖形的關鍵點;

 ?。?)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數(shù),得到這些關鍵點的對應點;

 ?。?)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。

  說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

  常見考法

 ?。?)把平移旋轉結合起來證明三角形全等;

  (2)利用平移變換與旋轉變換的性質,設計一些題目。

  誤區(qū)提醒

 ?。?)弄反了坐標平移的上加下減,左減右加的規(guī)律;

 ?。?)平移與旋轉的性質沒有掌握。

初中數(shù)學知識點總結 8篇(人教版初中數(shù)學知識點總結)相關文章:

初中數(shù)學教學工作總結12篇(初中數(shù)學教學年度總結)

初中數(shù)學教育敘事【通用9篇】

薦初中數(shù)學教學反思11篇 初中數(shù)學教學反思萬能簡短

初中數(shù)學八年級教學計劃5篇 八年級教學工作計劃數(shù)學

數(shù)學初中全部重要知識點總結4篇(初中數(shù)學重點知識總結與歸納)

教學計劃初中數(shù)學范文4篇(數(shù)學教學計劃中學)

初中數(shù)學教師讀書計劃3篇(初中數(shù)學教師讀書筆記大全)

初中數(shù)學教研組工作計劃11篇 初中數(shù)學教研組團隊建設

初中數(shù)學教師教學計劃3篇 初中數(shù)學教師學期工作計劃

初中數(shù)學教研組的工作計劃3篇(初中數(shù)學教研組工作計劃2023)