下面是范文網(wǎng)小編整理的高一數(shù)學(xué)等比數(shù)列教案3篇 高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)總結(jié),供大家參閱。
高一數(shù)學(xué)等比數(shù)列教案1
教學(xué)目標(biāo)
1、理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題。
?。?)正確理解等比數(shù)列的定義,了解公比的概念,明確一個(gè)數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等比數(shù)列,了解等比中項(xiàng)的概念;
?。?)正確認(rèn)識(shí)使用等比數(shù)列的表示法,能靈活運(yùn)用通項(xiàng)公式求等比數(shù)列的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);
?。?)通過(guò)通項(xiàng)公式認(rèn)識(shí)等比數(shù)列的性質(zhì),能解決某些實(shí)際問(wèn)題。
2、通過(guò)對(duì)等比數(shù)列的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì)。
3、通過(guò)對(duì)等比數(shù)列概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度。
教學(xué)建議
教材分析
?。?)知識(shí)結(jié)構(gòu)
等比數(shù)列是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用。
?。?)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)
是等比數(shù)列的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用
教學(xué)難點(diǎn)
在于等比數(shù)列通項(xiàng)公式的推導(dǎo)和運(yùn)用
?、倥c等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出等比數(shù)列的特性,這些是教學(xué)的重點(diǎn)。
?、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn)。
③對(duì)等差數(shù)列、等比數(shù)列的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn)。
教學(xué)建議
?。?)建議本節(jié)課分兩課時(shí),一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項(xiàng)公式的應(yīng)用。
?。?)等比數(shù)列概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義、也可將幾個(gè)等差數(shù)列和幾個(gè)等比數(shù)列混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括等比數(shù)列的定義。
?。?)根據(jù)定義讓學(xué)生分析等比數(shù)列的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解。
?。?)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納等比數(shù)列的各種表示法、啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫(huà)數(shù)列的圖象。
(5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),等比數(shù)列的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn)。
(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用。
教學(xué)設(shè)計(jì)示例
課題:等比數(shù)列的概念
教學(xué)目標(biāo)
1、通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式。
2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力。
3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)。
教學(xué)用具
投影儀,多媒體軟件,電腦。
教學(xué)方法
討論、談話法。
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn)、(幻燈片)
?、伲?,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
?、?,1,1,1,1,1,1,…
?、?43,81,27,9,3,1,,,…
?、?1,29,27,25,23,21,19,…
?、?,-1,1,-1,1,-1,1,-1,…
?、?,-10,100,-1000,10000,-100000,…
?、?,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列)。
二、講解新課
請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題、假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列??等比數(shù)列、(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
等比數(shù)列(板書(shū))
1、等比數(shù)列的定義(板書(shū))
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的教師寫(xiě)出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ)。
請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):
2、對(duì)定義的'認(rèn)識(shí)(板書(shū))
?。?)等比數(shù)列的首項(xiàng)不為0;
?。?)等比數(shù)列的每一項(xiàng)都不為0,即;
問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?
?。?)公比不為0、
用數(shù)學(xué)式子表示等比數(shù)列的定義、
是等比數(shù)列①、在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為是等比數(shù)列?為什么不能?
式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式。
3、等比數(shù)列的通項(xiàng)公式(板書(shū))
問(wèn)題:用和表示第項(xiàng)、
①不完全歸納法
?、诏B乘法
,…,,這個(gè)式子相乘得,所以。
?。ò鍟?shū))(1)等比數(shù)列的通項(xiàng)公式
得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式。
?。ò鍟?shū))(2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來(lái)說(shuō),最后歸結(jié):
?、俸瘮?shù)觀點(diǎn);
?、诜匠趟枷耄ㄒ蛟诘炔顢?shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已)。
這里強(qiáng)調(diào)方程思想解決問(wèn)題、方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。
三、小結(jié)
1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;
2、注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;
3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。
四、作業(yè)(略)
五、 板書(shū)設(shè)計(jì)
三、等比數(shù)列
1、等比數(shù)列的定義
2、對(duì)定義的認(rèn)識(shí)
3、等比數(shù)列的通項(xiàng)公式
?。?)公式
?。?)對(duì)公式的認(rèn)識(shí)
探究活動(dòng)
將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。
參考答案:
30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰??珠穆朗瑪峰的高度、如果紙?jiān)俦∫恍?,比如紙?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了、還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行)。
高一數(shù)學(xué)等比數(shù)列教案2
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。
教學(xué)重難點(diǎn)
熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。
教學(xué)過(guò)程
【復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問(wèn)題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問(wèn)題的能力,強(qiáng)化應(yīng)用儀式。
【方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問(wèn)題的關(guān)鍵是通過(guò)對(duì)實(shí)際問(wèn)題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
一、基礎(chǔ)訓(xùn)練
1、某種細(xì)菌在培養(yǎng)過(guò)程中,每20分鐘*一次一個(gè)*為兩個(gè),經(jīng)過(guò)3小時(shí),這種細(xì)菌由1個(gè)可繁殖成
A、511B、512C、1023D、1024
2、若一工廠的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為
A、B、
C、D、
二、典型例題
例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問(wèn)到第n期期末的本金和是多少?
評(píng)析:此例來(lái)自一種常見(jiàn)的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時(shí)期到期,可以提出全部本金及利息,這是整取。計(jì)算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實(shí)際問(wèn)題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]
例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲(chǔ)蓄,若每年利率q保持不變,且每年到期的存款本息均自動(dòng)轉(zhuǎn)為新的'一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?
例3、某地區(qū)位于沙漠邊緣,人與自然進(jìn)行長(zhǎng)期頑強(qiáng)的斗爭(zhēng),到1999年底全地區(qū)的綠化率已達(dá)到30%,從20xx年開(kāi)始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹(shù),改造為綠洲,同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?。?wèn)經(jīng)過(guò)多少年的努力才能使全縣的綠洲面積超過(guò)60%。lg2=0.3
例4、流行性感冒簡(jiǎn)稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門(mén)采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問(wèn)11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
高一數(shù)學(xué)等比數(shù)列教案3
一、教學(xué)目標(biāo):
1.知識(shí)與技能:理解并掌握等比數(shù)列的性質(zhì)并且能夠初步應(yīng)用。
2.過(guò)程與方法:通過(guò)觀察、類比、猜測(cè)等推理方法,提高我們分析、綜合、抽象、
概括等邏輯思維能力。
3.情感態(tài)度價(jià)值觀:體會(huì)類比在研究新事物中的作用,了解知識(shí)間存在的共同規(guī)律。
二、重點(diǎn):等比數(shù)列的性質(zhì)及其應(yīng)用。
難點(diǎn):等比數(shù)列的性質(zhì)應(yīng)用。
三、教學(xué)過(guò)程。
同學(xué)們,我們已經(jīng)學(xué)習(xí)了等差數(shù)列,又學(xué)習(xí)了等比數(shù)列的基礎(chǔ)知識(shí),今天我們繼續(xù)學(xué)習(xí)等比數(shù)列的性質(zhì)及應(yīng)用。我給大家發(fā)了導(dǎo)學(xué)稿,讓大家做了預(yù)習(xí),現(xiàn)在找同學(xué)對(duì)照下面的表格說(shuō)說(shuō)等差數(shù)列和等比數(shù)列的差別。
數(shù)列名稱 等差數(shù)列 等比數(shù)列
定義 一個(gè)數(shù)列,若從第二項(xiàng)起 每一項(xiàng)減去前一項(xiàng)之差都是同一個(gè)常數(shù),則這個(gè)數(shù)列是等差數(shù)列。 一個(gè)數(shù)列,若從第二項(xiàng)起 每一項(xiàng)與前一項(xiàng)之比都是同一個(gè)非零常數(shù),則這個(gè)數(shù)列是等比數(shù)列。
定義表達(dá)式 an-an-1=d (n≥2)
(q≠0)
通項(xiàng)公式證明過(guò)程及方法
an-an-1=d; an-1-an-2=d,
…a2-a1=d
an-an-1+ an-1-an-2+…+a2-a1=(n-1)d
an=a1+(n-1)*d
累加法 ; …….
an=a1q n-1
累乘法
通項(xiàng)公式 an=a1+(n-1)*d an=a1q n-1
多媒體投影(總結(jié)規(guī)律)
數(shù)列名稱 等差數(shù)列 等比數(shù)列
定 義 等比數(shù)列用“比”代替了等差數(shù)列中的“差”
定 義
表
達(dá) 式 an-an-1=d (n≥2)
通項(xiàng)公式證明
迭加法 迭乘法
通 項(xiàng) 公 式
加-乘
乘—乘方
通過(guò)觀察,同學(xué)們發(fā)現(xiàn):
等差數(shù)列中的 減法、加法、乘法,
等比數(shù)列中升級(jí)為 除法、乘法、乘方.
四、探究活動(dòng)。
探究活動(dòng)1:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來(lái)講解練習(xí)1;等差數(shù)列的性質(zhì)1;猜想等比數(shù)列的性質(zhì)1;性質(zhì)證明。
練習(xí)1 在等差數(shù)列{an}中,a2= -2,d=2,求a4=_____..(用一個(gè)公式計(jì)算) 解:a4= a2+(n-2)d=-2+(4-2)*2=2
等差數(shù)列的性質(zhì)1: 在等差數(shù)列{an}中, a n=am+(n-m)d.
猜想等比數(shù)列的性質(zhì)1 若{an}是公比為q的等比數(shù)列,則an=am*qn-m
性質(zhì)證明 右邊= am*qn-m= a1qm-1qn-m= a1qn-1=an=左邊
應(yīng)用 在等比數(shù)列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2*22=-8
探究活動(dòng)2:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來(lái)講解練習(xí)2;等差數(shù)列的性質(zhì)2;猜想等比數(shù)列的性質(zhì)2;性質(zhì)證明。
練習(xí)2 在等差數(shù)列{an}中,a3+a4+a5+a6+a7=450,則a2+a8的值為 . 解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180
等差數(shù)列的性質(zhì)2: 在等差數(shù)列{an}中, 若m+n=p+q,則am+an=ap+aq 特別的,當(dāng)m=n時(shí),2 an=ap+aq
猜想等比數(shù)列的性質(zhì)2 在等比數(shù)列{an} 中,若m+n=s+t則am*an=as*at 特別的,當(dāng)m=n時(shí),an2=ap*aq
性質(zhì)證明 右邊=am*an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as*at=左邊 證明的方向:一般來(lái)說(shuō),由繁到簡(jiǎn)
應(yīng)用 在等比數(shù)列{an}若an>0,a2a4+2a3a5+a4a6=36,則a3+a5=_____. 解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36
由于an>0,a3+a5>0,a3+a5=6
探究活動(dòng)3:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來(lái)講解練習(xí)3;等差數(shù)列的性質(zhì)3;猜想等比數(shù)列的性質(zhì)3;性質(zhì)證明。
練習(xí)3 在等差數(shù)列{an}中,a30=10,a45=90,a60=_____. 解:a60=2* a45- a30=2×90-10=170
等差數(shù)列的性質(zhì)3: 若an-k,an,an+k是等差數(shù)列{an}中的三項(xiàng), 則這些項(xiàng)構(gòu)成新的等差數(shù)列,且2an=an-k+an+k
an即時(shí)an-k,an,an+k的等差中項(xiàng)
猜想等比數(shù)列的性質(zhì)3 若an-k,an,an+k是等比數(shù)列{an}中的三項(xiàng),則這些項(xiàng)構(gòu)成新的等比數(shù)列,且an2=an-k*an+k
an即時(shí)an-k,an,an+k的等比中項(xiàng)
性質(zhì)證明 右邊=an-k*an+k= a1qn-k-1 a1qn+k-1= a12qn-k-1+n+k-1= a12q2n-2=(a1qn-1) 2t=an2左邊 證明的方向:由繁到簡(jiǎn)
應(yīng)用 在等比數(shù)列 {an}中a30=10,a45=90,a60=_____.
解:a60= = =810
應(yīng)用 等比數(shù)列{an}中,a15=10, a45=90,a60=________. 解:
a30= = = 30
A60=
探究活動(dòng)4:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來(lái)講解練習(xí)4;等差數(shù)列的性質(zhì)4;猜想等比數(shù)列的性質(zhì)4;性質(zhì)證明。
練習(xí)4 設(shè)數(shù)列{an} 、{ bn} 都是等差數(shù)列,若a1+b1=7,a3+b3=21,則a5+b5=_____. 解:a5+b5=2(a3+b3)-(a1+b1)=2*21-7=35
等差數(shù)列的性質(zhì)4: 設(shè)數(shù)列{an} 、{ bn} 是公差分別為d1、d2的等差數(shù)列,則數(shù)列{an+bn}是公差d1+d2的等差數(shù)列 兩個(gè)項(xiàng)數(shù)相同的等差數(shù)列的和任然是等差數(shù)列
猜想等比數(shù)列的性質(zhì)4 設(shè)數(shù)列{an} 、{ bn} 是公比分別為q1、q2的等比數(shù)列,則數(shù)列{an*bn}是公比為q1q2的`等比數(shù)列 兩個(gè)項(xiàng)數(shù)相同的等比數(shù)列的和比一定是等比數(shù)列,兩個(gè)項(xiàng)數(shù)相同的等比數(shù)列的積任然是等比數(shù)列。
性質(zhì)證明 證明:設(shè)數(shù)列{an}的首項(xiàng)是a1,公比為q1; {bn}的首項(xiàng)為b1,公比為q2,設(shè)cn=anbn那么數(shù)列{anbn} 的第n項(xiàng)與第n+1項(xiàng)分別為:
應(yīng)用 設(shè)數(shù)列{an} 、{ bn} 都是等比數(shù)列,若a1b1=7,a3b3=21,則a5b5=_____. 解:由題意可知{anbn}是等比數(shù)列,a3b3是a1b1;a5b5的等比中項(xiàng)。
由(a3b3)2= a1b1* a5b5 212= 7* a5b5 a5b5=63
(四個(gè)探究活動(dòng)的設(shè)計(jì)充分尊重學(xué)生的主體地位,以學(xué)生的自主學(xué)習(xí),自主探究為主題,以教師的指導(dǎo)為輔,開(kāi)展教學(xué)活動(dòng))
五、等比數(shù)列具有的單調(diào)性
(1)q<0,等比數(shù)列為 擺動(dòng) 數(shù)列, 不具有 單調(diào)性
(2)q>0(舉例探討并填表)
a1 a1>0 a1<0
q的范圍 0 q=1 q>1 0 q=1 q>1
{an}的單調(diào)性 單調(diào)遞減 不具有單調(diào)性 單調(diào)遞增 單調(diào)遞增 不具有單調(diào)性 單調(diào)遞減
讓學(xué)生舉例說(shuō)明,并查驗(yàn)有多少學(xué)生填對(duì)。(真確評(píng)價(jià))
六、課堂練習(xí):
1、已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a7a8a9=10,則a4a5a6等于( ).
A. B.7 C.6 D.
解析:由已知得a32=5, a82=10,
∴a4a5a6=a53= = =5 .
答案:A
2、已知數(shù)列1,a1,a2,4是等比數(shù)列,則a1a2= .
答案:4
3、 +1與 -1兩數(shù)的等比中項(xiàng)是( ).
A.1 B.-1 C. D.±1
解析:根據(jù)等比中項(xiàng)的定義式去求。答案:選D
4、已知等比數(shù)列{an}的公比為正數(shù),且a3a9=2 ,a2=1,則a1等于( ).
A.2 B. C. D.
解析:∵a3a9= =2 ,∴ =q2=2,∵q>0,∴q= .故a1= = = .
答案:C
5練習(xí)題:三個(gè)數(shù)成等比數(shù)列,它們的和等于14,
它們的積等于64,求這三個(gè)數(shù)。
分析:若三個(gè)數(shù)成等差數(shù)列,則設(shè)這三個(gè)數(shù)為a-d,a,a+d.
由類比思想的應(yīng)用可得,若三個(gè)數(shù)成等比數(shù)列,則設(shè)這三個(gè)數(shù)
為: 根據(jù)題意
再由方程組可得:q=2 或
既這三個(gè)數(shù)為2,4,8或8,4,2。
七、小結(jié)
本節(jié)課通過(guò)觀察、類比、猜測(cè)等推理方法,研究等比數(shù)列的性質(zhì)及其應(yīng)用,從而培養(yǎng)和提高我們綜合運(yùn)用分析、綜合、抽象、概括,邏輯思維解決問(wèn)題的能力。
八、
§3.1.2等比數(shù)列的性質(zhì)及應(yīng)用
性質(zhì)一:若{an}是公比為q的等比數(shù)列,則an=am*qn-m
性質(zhì)二:在等比數(shù)列{an} 中,若m+n=s+t則am*an=as*at
性質(zhì)三:若an-k,an,an+k是等比數(shù)列{an}中的三項(xiàng),則這些
項(xiàng)構(gòu)成新的等比數(shù)列,且 an2=an-k*an+k
性質(zhì)四:設(shè)數(shù)列{an} 、{ bn} 是公比分別為q1、q2的等比
數(shù)列,則數(shù)列{an*bn}是公比為q1q2的等比數(shù)列
板書(shū)設(shè)計(jì)
九、反思
高一數(shù)學(xué)等比數(shù)列教案3篇 高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 小學(xué)六年級(jí)數(shù)學(xué)《比例的意義和基本性質(zhì)》教案3篇 六年級(jí)比例的意義教學(xué)設(shè)計(jì)
★ 小班數(shù)學(xué)水果排隊(duì)教案3篇 應(yīng)彩云小班數(shù)學(xué)水果排隊(duì)
★ 中班數(shù)學(xué)按規(guī)律排序教案12篇 中班數(shù)學(xué)規(guī)律排序教案《森林的舞會(huì)》
★ 實(shí)用的小學(xué)數(shù)學(xué)教案7【5篇】 小學(xué)數(shù)學(xué)通用教案模板
★ 小學(xué)三年級(jí)數(shù)學(xué)教案12篇(三年級(jí)數(shù)學(xué)課標(biāo)要求)
★ 二年級(jí)數(shù)學(xué)《總復(fù)習(xí)》教案12篇(二年級(jí)數(shù)學(xué)下冊(cè)教案)
★ 初一的數(shù)學(xué)上冊(cè)教案10篇 初一數(shù)學(xué)上冊(cè)教案青島版
★ 數(shù)學(xué)《1和許多》小班教案含反思3篇(小班數(shù)學(xué)《1和許多》教學(xué)反思)
★ 大班數(shù)學(xué)教案常用4篇(適合大班數(shù)學(xué)教案)
★ 1和許多的數(shù)學(xué)教案12篇(數(shù)學(xué)1和許多教案反思)