亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

初中數(shù)學矩形教案4篇(人教版初中矩形數(shù)學說課稿)

時間:2024-02-07 10:12:00 教案

  下面是范文網(wǎng)小編分享的初中數(shù)學矩形教案4篇(人教版初中矩形數(shù)學說課稿),以供參考。

初中數(shù)學矩形教案4篇(人教版初中矩形數(shù)學說課稿)

初中數(shù)學矩形教案1

  教學目標:

  知識與技能目標:

  1.掌握矩形的概念、性質(zhì)和判別條件.

  2.提高對矩形的性質(zhì)和判別在實際生活中的應(yīng)用能力.

  過程與方法目標:

  1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法.

  2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想.

  情感與態(tài)度目標:

  1.在操作活動過程中,加深對矩形的的認識,并以此激發(fā)學生的探索精神.2.通過對矩形的探索學習,體會它的內(nèi)在美和應(yīng)用美.

  教學重點:矩形的性質(zhì)和常用判別方法的理解和掌握.

  教學難點:矩形的性質(zhì)和常用判別方法的綜合應(yīng)用.

  教學方法:分析啟發(fā)法

  教具準:像框,平行四邊形框架教具,多媒體課件.

  教學過程設(shè)計:

  一.情境導入:

  演示平行四邊形活動框架,引入課題.

  二.講授新課:

  1.歸納矩形的定義:

  問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學生思考、回答.)

  結(jié)論:有一個內(nèi)角是直角的平行四邊形是矩形.

  八年級數(shù)學上冊教案2.探究矩形的性質(zhì):

  (1).問題:像框除了“有一個內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學生思考、回答.)

  結(jié)論:矩形的四個角都是直角.

 ?。?).探索矩形對角線的性質(zhì):

  讓學生進行如下操作后,思考以下問題:(幻燈片展示)

  在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.

 ?、?隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

 ?、?當∠α是銳角時,兩條對角線的長度有什么關(guān)系?當∠α是鈍角時呢?

 ?、?當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關(guān)系?

 ?。▽W生操作,思考、交流、歸納.)

  結(jié)論:矩形的兩條對角線相等.

 ?。?).議一議:(展示問題,引導學生討論解決.)

 ?、?矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.

  ②.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?

 ?。?).歸納矩形的'性質(zhì):(引導學生歸納,并體會矩形的“對稱美”.)

  矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.

  例解:(性質(zhì)的運用,滲透矩形對角線的“化歸”功能.)

  如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4

  厘米.求BD與AD的長.

 ?。ㄒ龑W生分析、解答.)

  探索矩形的判別條件:(由修理桌子引出)

 ?。?).想一想:(學生討論、交流、共同學習)

  對角線相等的平行四邊形是怎樣的四邊形?為什么?

  結(jié)論:對角線相等的平行四邊形是矩形.

 ?。ɡ碛煽捎蓭熒餐治?,然后用幻燈片展示完整過程.)

 ?。?).歸納矩形的判別方法:(引導學生歸納)

  有一個內(nèi)角是直角的平行四邊形是矩形.

  對角線相等的平行四邊形是矩形.

  三.課堂練習:(出示P98隨堂練習題,學生思考、解答.)

  四.新課小結(jié):

  通過本節(jié)課的學習,你有什么收獲?

 ?。◣熒餐瑥闹R與思想方法兩方面小結(jié).)

  五.作業(yè)設(shè)計:P99習題4.6第1、2、3題.

  板書設(shè)計:

  4.矩形

  矩形的定義:

  矩形的性質(zhì):

  前面知識的小系統(tǒng)圖示:

  三.矩形的判別條件:

  例1

  課后反思:在平行四邊形及菱形的教學后。學生已經(jīng)學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計算也學會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決??偟目磥磉@節(jié)課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。

初中數(shù)學矩形教案2

  一、教學目標:

  1.理解并掌握矩形的判定方法.

  2.使學生能應(yīng)用矩形定義、判定等知識,解決簡單的證明題和計算題,進一步培養(yǎng)學生的分析能力

  二、重點、難點

  1.重點:矩形的判定.

  2.難點:矩形的判定及性質(zhì)的綜合應(yīng)用.

  三、例題的意圖分析

  本節(jié)課的三個例題都是補充題,例1在的一組判斷題是為了讓學生加深理解判定矩形的條件,老師們在教學中還可以適當?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識進行計算;例3是一道矩形的判定題,三個題目從不同的角度出發(fā),來綜合應(yīng)用矩形定義及判定等知識的.

  四、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對角錢相等的`平行四邊形是矩形.

  矩形判定方法2:有三個角是直角的四邊形是矩形.

  (指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

  五、例習題分析

  例1(補充)下列各句判定矩形的說法是否正確?為什么?

 ?。?)有一個角是直角的四邊形是矩形; ()

 ?。?)有四個角是直角的四邊形是矩形; ()

 ?。?)四個角都相等的四邊形是矩形; ()

 ?。?)對角線相等的四邊形是矩形; ()

 ?。?)對角線相等且互相垂直的四邊形是矩形; ()

 ?。?)對角線互相平分且相等的四邊形是矩形; ()

 ?。?)對角線相等,且有一個角是直角的四邊形是矩形; ()

  (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;()

  (9)兩組對邊分別平行,且對角線相等的四邊形是矩形. ()

  指出:

  (l)所給四邊形添加的條件不滿足三個的肯定不是矩形;

 ?。?)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2 (補充)已知 ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4 cm,求這個平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  AO= AC,BO= BD.

  ∵ AO=BO,

  AC=BD.

  ABCD是矩形(對角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  BC= (cm).

  例3 (補充) 已知:如圖(1), ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明.

  證明:∵ 四邊形ABCD是平行四邊形,

  AD∥BC.

  DAB+ABC=180.

  又 AE平分DAB,BG平分ABC ,

  EAB+ABG= 180=90.

  AFB=90.

  同理可證AED=BGC=CHD=90.

  四邊形EFGH是平行四邊形(有三個角是直角的四邊形是矩形).

  六、隨堂練習

  1.(選擇)下列說法正確的是( ).

 ?。ˋ)有一組對角是直角的四邊形一定是矩形(B)有一組鄰角是直角的四邊形一定是矩形

 ?。–)對角線互相平分的四邊形是矩形 (D)對角互補的平行四邊形是矩形

  2.已知:如圖 ,在△ABC中,C=90, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形.

  七、課后練習

  1.工人師傅做鋁合金窗框分下面三個步驟進行:

 ?、?先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;

 ?、?擺放成如圖②的四邊形,則這時窗框的形狀是 形,根據(jù)的數(shù)學道理是: ;

 ?、?將直角尺靠緊窗框的一個角(如圖③),調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖④),說明窗框合格,這時窗框是 形,根據(jù)的數(shù)學道理是: ;

  2.在Rt△ABC中,C=90,AB=2AC,求A、B的度數(shù).

初中數(shù)學矩形教案3

  一.學生情況分析

  學生已經(jīng)學習了平行四邊形的性質(zhì)和判定,也學習了一種特殊的平行四邊形菱形的性質(zhì)和判定,對于類似的問題有一定的學習精力、經(jīng)驗和感受,這將更有利于學生對本節(jié)課的學習。

  二.教學任務(wù)分析

  教學目標:

  知識目標:

  1.掌握正方形的定義,弄清正方形與平行四邊形、菱形、矩形的關(guān)系。

  2.掌握正方形的性質(zhì)定理1和性質(zhì)定理2。

  3.正確運用正方形的性質(zhì)解題。

  能力目標:

  1.通過四邊形的從屬關(guān)系滲透集合思想。

  2.在直觀操作活動和簡單的說理過程中,發(fā)展學生初步的合情推理能力、主動探究習慣,逐步掌握說理的基本方法。

  情感與價值觀

  1.通過理解四種四邊形內(nèi)在聯(lián)系,培養(yǎng)學生辯證觀點

  教學重點:正方形的性質(zhì)的應(yīng)用.

  教學難點:正方形的性質(zhì)的應(yīng)用.

  三、教學過程設(shè)計

  課前準備

  教具準備: 一個活動的平行四邊形木框、白紙、剪刀.

  學生用具:白紙、剪刀

  教學過程設(shè)計分成四分環(huán)節(jié):

  第一環(huán)節(jié):巧設(shè)情境問題,引入課題

  第二環(huán)節(jié):講授新課

  第三環(huán)節(jié):新課小結(jié)

  第四環(huán)節(jié):布置作業(yè)

  第一環(huán)節(jié) 巧設(shè)情境問題,引入課題

  進入正題,提出本節(jié)課的研究主題正方形

  第二環(huán)節(jié) 講授新課

  主要環(huán)節(jié)

 ?。?)呈現(xiàn)兩種通過不同途徑得到正方形的過程,給正方形下定義

 ?。?)討論正方形的性質(zhì)

  (3)通過練習加強對正方形性質(zhì)的理解

 ?。?)尋找平行四邊形、矩形、菱形、正方形之間的相互關(guān)系。

  (5)尋找正方形的判定方法

  目的:

  1. 正方形是特殊的平行四邊形,也是特殊的矩形和菱形,因此想得到一個正方形,可以在矩形的基礎(chǔ)上強化邊的條件得到,也可以在菱形的基礎(chǔ)上強化角的條件得到。于是在課上呈現(xiàn)這兩種變化,為后面尋求平行四邊形、矩形、菱形、正方形的關(guān)系打下基礎(chǔ)。

  2. 由于采用了兩種正方形形成的方式,因此正方形的性質(zhì)和判定方法都可以從中挖掘和發(fā)現(xiàn)。

  大致教學過程

  呈現(xiàn)一個平行四邊形變成正方形的全過程.(演示)

  由于平行四邊形具有不穩(wěn)定性,所以先把平行四邊形木框的一個角變?yōu)橹苯?,再移動一條短邊,截成有一組鄰邊相等,此時平行四邊形變成了一個正方形.

  這個變化過程,可用如下圖表示

  由此可知:正方形是一組鄰邊相等的矩形.即:一組鄰邊相等的矩形叫做正方形.

  這個平行四邊形木框還可以這樣變化:先移動一條短邊,截成有一組鄰邊相等的'平行四邊形,再把一個角變成直角,此時的平行四邊形也變成了正方形.

  這個變化過程,也可用圖表示

  你能根據(jù)上面的變化過程,給正方形下定義嗎?

  一組鄰邊相等的平行四邊形是菱形.正方形是一個角為直角的菱形,所以可以說:有一個角是直角的菱形叫做正方形.

  由此可知:正方形是特殊的矩形,即是鄰邊相等的矩形,也是特殊的菱形,即是有一個角是直角的菱形.

  因為正方形是平行四邊形、菱形、矩形,所以它的性質(zhì)是它們的綜合,不僅有平行四邊形的所有性質(zhì),也有矩形和菱形的特殊性質(zhì),即:正方形具有平行四邊形、菱形、矩形的一切性質(zhì).

  正方形的性質(zhì):

  邊:對邊平行、四邊相等

  角:四個角都是直角

  對角線:對角線相等,互相垂直平分,每條對角線平分一組對角.

  正方形是軸對稱圖形嗎?如是,它有幾條對稱軸?

  正方形是軸對稱圖形,它有四條對稱軸,即:兩條對角線,兩組對邊的中垂線.

  例題

 ?。劾?]如圖,四邊形ABCD是正方形,兩條對角線相交于點O,求AOB,OAB的度數(shù).

  分析:本題是正方形的性質(zhì)的直接應(yīng)用.正方形的性質(zhì)很多,要恰當運用,本題主要用到正方形的對角線的性質(zhì),即正方形的軸對稱性.

  解:正方形ABCD是菱形,對角線AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且對角線AC平分BAD,因此:OAB=45

  拿出準備好的剪刀、白紙來做一做

  將一張長方形紙對折兩次,然后剪下一個角,打開,怎樣剪才能剪出一個正方形?(學生動手折疊,想,剪切)

  只要保證剪口線與折痕成45角即可.因為正方形的兩條對角線把它分成四個全等的等腰直角三角形,把折痕作對角線,這時只需剪一個等腰直角三角形,打開即是正方形.

  正方形是平行四邊形、矩形、又是菱形,那么它們四者之間有何關(guān)系呢?

  正方形、矩形、菱形及平行四邊形四者之間有什么關(guān)系呢?

  它們的包含關(guān)系如圖:

  此圖給出了正方形的判別條件,即怎樣判定一個平行四邊形是正方形?

  先判定一個四邊形是平行四邊形,再判定這個平行四邊形是矩形,然后再判定這個矩形是菱形;或者先判定一個四邊形是菱形,再判定這個菱形是矩形.

  由于判定平行四邊形、矩形、菱形的方法各異,所給出的條件不一樣,所以判定一個四邊形是不是正方形的具體條件相應(yīng)可作變化,在應(yīng)用時要仔細辨別后才可以作出判斷.

  第三環(huán)節(jié) 課堂練習

  教材 隨堂練習1,2

  第四環(huán)節(jié) 課時小結(jié)

  正方形的定義:一組鄰邊相等的矩形.

  正方形的性質(zhì)與平行四邊形、矩形、菱形的性質(zhì)可比較如下:(出示小黑板)

  第五環(huán)節(jié) 課后作業(yè)

  課本習題4.7 1,2,3.

  四.教學設(shè)計反思

  在教材中,并沒有明確的給出正方形的判定定理。那么教師在課堂上應(yīng)該幫助學生理清思路,使他們明確判定的方法。

  為了實現(xiàn)這個目標,在本節(jié)課的開始,教師就采取了兩種方式呈現(xiàn)正方形的形成過程,在直觀上幫助學生認識了正方形與矩形、正方形與菱形之間的關(guān)系;在講解正方形性質(zhì)的過程中又再次強化了這種認識。通過層層鋪墊,讓學生明確矩形+鄰邊相等就是正方形,菱形+一個直角就是正方形,如何判定圖形是矩形或是菱形,前面已經(jīng)學習過,因此關(guān)于正方形的判定是需要一個條件一個條件“疊加”完成的。

初中數(shù)學矩形教案4

  學習目標:

  1、通過具體動手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系

  2、通過類比平行四邊形的性質(zhì)定理,推導并掌握矩形的性質(zhì)定理,會用定理進行一些簡單的計算證明、

  3、通過矩形的對角線相等這一性質(zhì)能推導出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內(nèi)在聯(lián)系,發(fā)展學生的合理推理的能力

  學習重難點:

  重點:矩形的性質(zhì)定理

  難點:靈活應(yīng)用矩形的性質(zhì)進行有關(guān)的計算與證明

  課前準備

  教具準備:活動平行四邊形框架、教師準備PPT課件

  教學過程:

  知識回顧

  1、什么叫平行四邊形?

  2、平行四邊形有哪些性質(zhì)?

  【設(shè)計意圖】:

  通過對舊知的復習,一方面鞏固就知,另一方面為學習新知做好鋪墊

  合作探究一:矩形的定義

  閱讀課本第17-18頁,“實驗與探究”,思考:什么叫做矩形?

  用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形、從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  【設(shè)計意圖】:

  通過小組合作觀察,討論平行四邊形具備什么條件時,就成了矩形,自己歸納出矩形的定義、給學生更多的思考空間,促進學生積極思考,發(fā)展學生的思維

  歸納:有一個角是直角的平行四邊形叫做矩形、

  合作探究二:矩形的性質(zhì)定理

  1、自主完成18頁的觀察與思考,通過實際操作回答提出的問題

  2、小組合作:完成對性質(zhì)的證明過程

  【設(shè)計意圖】:

  通過利用手中的矩形紙片動手操作使學生對矩形的性質(zhì)獲得豐富的直觀體驗,為總結(jié)矩形的性質(zhì)定理打下堅實基礎(chǔ)

  矩形的性質(zhì)定理1:矩形的四個角都是直角

  矩形的性質(zhì)定理2:矩形的兩條對角線相等

  合作探究三:直角三角形的性質(zhì)定理3

  設(shè)矩形的'對角線AC與BD交于點O,那么,BE是Rt△AB中一條怎樣的特殊線段

 ?。˙O是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關(guān)系,為什么?

  【設(shè)計意圖】:

  根據(jù)圖形學生很容易猜想結(jié)果,關(guān)鍵是從數(shù)學的角度證明留足充分的時間讓學生交流,教師適時引導,明確論證方法、學生獨立完成證明,以培養(yǎng)學生的推理能力、讓學生感受數(shù)學結(jié)論的確定性和證明的必要性

  結(jié)論:直角三角形斜邊上的中線等于斜邊的一半

  例題講解:

  例1、如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=6㎝,求矩形對角線AC的長?

  當堂檢測:

  1、矩形具有而平行四邊形不具有的性質(zhì)()

 ?。ˋ)對角相等(B)對邊相等(C)對角線相等(D)對角線互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線

 ?。?)若BD=3㎝,則AC=㎝

 ?。?)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長

  4、工人師傅做鋁合金窗框分下面三個步驟進行:

 ?。?)先截出兩對符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;

 ?。?)擺放成如圖(2)的四邊形,則這時窗框的形狀是_____,根據(jù)的數(shù)學道理是__________;

 ?。?)將直角尺靠緊窗框的一個角(如圖3)調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖4),說明窗框合格,這時窗框是____,根據(jù)的數(shù)學道理是________________。

  課堂小結(jié):

  請說出你本節(jié)課的收獲,與大家一塊分享??!

  作業(yè):

  課本P、20第2題

  板書設(shè)計:

  xxx

初中數(shù)學矩形教案4篇(人教版初中矩形數(shù)學說課稿)相關(guān)文章:

大班數(shù)學教案范文7篇(大班數(shù)學教案40反思)

小班數(shù)學教案范文7篇 小班數(shù)學教學教案

幼兒園中班數(shù)學教案優(yōu)秀3篇

初中數(shù)學教學反思8篇 一元一次方程數(shù)學教學反思

小班數(shù)學湯圓教案9篇(湯圓 小班)

初中生主題班會教案3篇 初中生的主題班會

初中生主題班會教案4篇(初中生主題班會活動記錄)

數(shù)學四年級上冊教案12篇(四年級上數(shù)學教案設(shè)計)

小學四年級數(shù)學教案12篇 小學四年級數(shù)學蠶絲教案

小學數(shù)學教案模板7篇 教資面試小學數(shù)學教案萬能模板