下面是范文網(wǎng)小編收集的初中數(shù)學(xué)的教學(xué)設(shè)計(jì)3篇(數(shù)學(xué)初中教案設(shè)計(jì)),供大家閱讀。
初中數(shù)學(xué)的教學(xué)設(shè)計(jì)1
隨著科學(xué)技術(shù)的發(fā)展,教育資源和教育需求也隨之增長和變化。我校進(jìn)行了初中數(shù)學(xué)分層教學(xué)課題研究,而分層次備課是搞好分層教學(xué)的關(guān)鍵,教師應(yīng)在吃透教材、大綱的情況下,按照不同層次學(xué)生的實(shí)際情況,設(shè)計(jì)好分層次教學(xué)的全過程。本文將結(jié)合本人的教學(xué)經(jīng)驗(yàn),對分層教學(xué)教案設(shè)計(jì)進(jìn)行初步探討。
1、教學(xué)目標(biāo)的制定
制定具體可行的教學(xué)目標(biāo),先要分清哪些屬于共同目標(biāo),哪些屬于層次目標(biāo)。并在知識與技能、過程與方法、情感態(tài)度與價值觀三個方面對不同層次的學(xué)生制定具體的要求。
2、教法學(xué)法的制定
制定教法學(xué)法應(yīng)結(jié)合各層次學(xué)生的具體情況而定,如對A層學(xué)生少講多練,注重培養(yǎng)其自學(xué)能力;對B層學(xué)生,則實(shí)行精講精練,注重課本上的例題和習(xí)題的處理;對C層學(xué)生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎(chǔ)知識和基本技能。
3、教學(xué)重難點(diǎn)的制定
教學(xué)重難點(diǎn)的制定也應(yīng)結(jié)合各層次學(xué)生的具體情況而定。
4、教學(xué)過程的設(shè)計(jì)
4.1情境導(dǎo)向,分層定標(biāo)。教師以實(shí)例演示、設(shè)問等多種方法導(dǎo)入新課。要利用各種教學(xué)資料創(chuàng)設(shè)恰當(dāng)?shù)膶W(xué)習(xí)情境為各層學(xué)生呈現(xiàn)適合于本層學(xué)生水平學(xué)習(xí)的內(nèi)容。
4.2分層練習(xí),探討生疑。學(xué)生對照各自的目標(biāo)分層自學(xué)。教師要鼓勵學(xué)生主動實(shí)踐,自覺地去發(fā)現(xiàn)問題、探討問題、解決問題。
4.3集體回授,異步釋疑。“集體回授”主要是針對人數(shù)占優(yōu)勢的B層學(xué)生,為解決具有共性的問題而組織的一種集體教學(xué)活動。教師為那些來不及解決的、不具有共性的問題分先后在層內(nèi)釋疑即“異步釋疑”。
5、練習(xí)與作業(yè)的設(shè)計(jì)
教師在設(shè)計(jì)練習(xí)或布置作業(yè)時要遵循“兩部三層”的原則?!皟刹俊笔侵妇毩?xí)或作業(yè)分為必做題和選做題兩部分;“三層”是指教師在處理練習(xí)時要具有三個層次:第一層次為知識的直接運(yùn)用和基礎(chǔ)練習(xí);第二、三兩層次的題目為選做題,這樣可使A層學(xué)生有練習(xí)的機(jī)會,B、C兩層學(xué)生也有充分發(fā)展的余地。
分層教學(xué)下教師不能再“拿一個教案用到底”,而要精心地設(shè)計(jì)課堂教學(xué)活動,針對不同層次的學(xué)生選擇恰當(dāng)?shù)姆椒ê褪侄?,了解學(xué)生的實(shí)際需求,關(guān)心他們的進(jìn)步,改革課堂教學(xué)模式,充分調(diào)動學(xué)生的學(xué)習(xí)主動性,創(chuàng)造良好的課堂教學(xué)氛圍,形成成功的激勵機(jī)制,確保每一個學(xué)生都有所進(jìn)步。
初中數(shù)學(xué)的教學(xué)設(shè)計(jì)2
一、教材分析
反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實(shí)生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。
二、學(xué)情分析
由于之前學(xué)習(xí)過函數(shù),學(xué)生對函數(shù)概念已經(jīng)有了一定的認(rèn)識能力,另外在前一章我們學(xué)習(xí)過分式的知識,因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。
三、教學(xué)目標(biāo)
知識目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達(dá)式.
解決問題:能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式. 情感態(tài)度:讓學(xué)生經(jīng)歷從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實(shí)際.
四、教學(xué)重難點(diǎn)
重點(diǎn):理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.
難點(diǎn):反比例函數(shù)表達(dá)式的確立.
五、教學(xué)過程
?。?)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運(yùn)行時間t(單位:h)的變化而變化;
(2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單
位:m)隨寬x(單位:m)的變化而變化。
請同學(xué)們寫出上述函數(shù)的表達(dá)式
14631000(2)y= tx
k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=
是自變量,y是函數(shù)。
此過程的目的在于讓學(xué)生從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實(shí)際. 由于是分式,當(dāng)x=0時,分式無意義,所以x≠0。
當(dāng)y= 中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。
舉例:下列屬于反比例函數(shù)的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)
已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
k x?1
k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。
例:已知y與x2反比例,并且當(dāng)x=3時y=4
?。?)求出y和x之間的函數(shù)解析式
(2)求當(dāng)x=1.5時y的值
解析:因?yàn)閥與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式最后學(xué)生練習(xí)并布置作業(yè)
通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認(rèn)識,以達(dá)到鞏固的目的。
六、評價與反思
本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識基礎(chǔ)上進(jìn)行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點(diǎn)在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.應(yīng)該對這一方面的內(nèi)容多練習(xí)鞏固。
初中數(shù)學(xué)的教學(xué)設(shè)計(jì)3
現(xiàn)代教學(xué)論研究指出,從本質(zhì)上講,學(xué)生學(xué)習(xí)的根本原因是問題。在數(shù)學(xué)課堂教學(xué)中,教師可根據(jù)不同的教學(xué)內(nèi)容,圍繞不同的教學(xué)目標(biāo),設(shè)計(jì)出符合學(xué)生實(shí)際的教學(xué)問題,圍繞所設(shè)計(jì)的問題開展教學(xué)活動。這樣,在課堂教學(xué)環(huán)節(jié)中,問題該怎樣設(shè)計(jì)?圍繞問題該怎樣進(jìn)行教學(xué),才能使教學(xué)效率得以提高?這是擺在我們面前急需解決的問題。
本文將結(jié)合自己的教學(xué)實(shí)踐,就問題設(shè)計(jì)的策略及反思等方面談?wù)勛约旱目捶ā?/p>
一、注重問題情境的創(chuàng)設(shè)
著名數(shù)學(xué)家費(fèi)賴登塔爾認(rèn)為:“數(shù)學(xué)源于現(xiàn)實(shí)又寓于現(xiàn)實(shí),數(shù)學(xué)教學(xué)應(yīng)從學(xué)生所接觸的客觀實(shí)際中提出問題,然后升華為數(shù)學(xué)概念、運(yùn)算法則或數(shù)學(xué)思想?!边@一觀念既反映了數(shù)學(xué)的本質(zhì),同時說明了在數(shù)學(xué)課堂教學(xué)中創(chuàng)設(shè)問題情境的重要性。比如,在《有理數(shù)的加法》一節(jié)的教學(xué)導(dǎo)入時,我首先出示了一周來本班的積分統(tǒng)計(jì)表(表中的得分用正數(shù)表示,失分用負(fù)數(shù)表示,)讓學(xué)生觀察:
星期 一 二 三 四 五 六 合計(jì)
積分 +3 -2 -4 -2 +2 +4
然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結(jié)果我發(fā)現(xiàn)大多數(shù)同學(xué)能用“抵消”的方法統(tǒng)計(jì)出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發(fā)現(xiàn)學(xué)生不知道該怎樣算。當(dāng)學(xué)生產(chǎn)生這樣的認(rèn)知沖突時我便引入了本節(jié)課要學(xué)習(xí)的內(nèi)容,最后我用表中的數(shù)據(jù)分成了幾種類型,如正數(shù)加正數(shù)、負(fù)數(shù)加負(fù)數(shù)、正數(shù)加負(fù)數(shù)等,展開新知學(xué)習(xí),教學(xué)效果較以前有明顯改觀。
本節(jié)課成功之處在于:
?。?)導(dǎo)入的情境問題貼近學(xué)生的現(xiàn)實(shí),調(diào)動了學(xué)生的積極性。
?。?)情境問題為后面的教學(xué)埋下了伏筆,引發(fā)了學(xué)生的認(rèn)知沖突。當(dāng)然,情境問題的創(chuàng)設(shè)不當(dāng),會直接影響教學(xué)。比如,在《函數(shù)》一節(jié)的教學(xué)時,我用游樂園中的摩天輪引入,當(dāng)我提出問題:“同學(xué)們,當(dāng)你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?”我發(fā)現(xiàn)學(xué)生幾乎沒有反應(yīng),只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數(shù)問題,只因?yàn)檗r(nóng)村學(xué)生對該情境的認(rèn)識模糊,一時沒有進(jìn)入到虛擬情境中來,導(dǎo)致課堂開端出現(xiàn)“僵局”,也影響了后面的教學(xué)工作的勝利開展。
2、教學(xué)重點(diǎn)、難點(diǎn)處的問題設(shè)計(jì)
初中數(shù)學(xué)課堂教學(xué)中重點(diǎn)與難點(diǎn)的處理將直接影響教學(xué)效果。通過設(shè)計(jì)好的問題串可以強(qiáng)化重點(diǎn)與突破難點(diǎn)。例如,《結(jié)識拋物線》一節(jié)的教學(xué)重點(diǎn)就是做二次函數(shù)y=x2的圖像并根據(jù)圖像認(rèn)識和理解函數(shù)的性質(zhì)。而作圖過程又是一個難點(diǎn)問題,要從所畫的圖像中發(fā)現(xiàn)并歸納性質(zhì),首先得畫出較準(zhǔn)確的函數(shù)圖像。在學(xué)生畫圖像的過程中,我抓住學(xué)生的幾種錯誤畫法提出了三個問題讓學(xué)生討論交流:
(1)根據(jù)你畫的圖像,給自變量x任取一個值,函數(shù)y有唯一的值與它對應(yīng)嗎?
?。?)自變量x的范圍是什么?
?。?)在0 (4)部分同學(xué)經(jīng)過對x的小范圍內(nèi)的取值、描點(diǎn)與連線之后觀察到了所畫的圖像是曲線型的,但是還有部分學(xué)生就是體驗(yàn)不到這種形狀。在這種情況下,我用計(jì)算機(jī)演示,當(dāng)所描出的點(diǎn)比較密集時所連的線是曲線而不是直線段,這樣才消除了學(xué)生的一些錯誤認(rèn)識。在隨后的觀察圖像歸納性質(zhì)的探索與交流活動中,學(xué)生樂于探索,主動交流,積極發(fā)表自己的想法,根據(jù)圖像歸納出了好幾條性質(zhì)。這樣,不但使重點(diǎn)得以突出、難點(diǎn)得到突破,而且發(fā)展了學(xué)生的思維。 3、例題或課堂練習(xí)中的問題設(shè)計(jì) 例題教學(xué)具有及時鞏固知識和靈活運(yùn)用知識的雙重功能,隨堂練習(xí)是檢查學(xué)生的數(shù)學(xué)學(xué)習(xí)效果和培養(yǎng)學(xué)生思維的有效手段之一。數(shù)學(xué)課堂教學(xué)中,教師通過優(yōu)選例題,精心設(shè)計(jì)層次分明的練習(xí),能夠讓學(xué)生以積極的態(tài)度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數(shù)的圖像與性質(zhì)》一節(jié)的教學(xué)中設(shè)計(jì)了一道這樣的問題:已知A(-2,y1)、B(-1,y2)、C(2,y3)三點(diǎn)都在反比例函數(shù)y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關(guān)系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三點(diǎn)也在反比例函數(shù)y=k/x(k>0)的圖像上,其中a0判斷y1、y2、y3的大小關(guān)系。教學(xué)中我發(fā)現(xiàn)多數(shù)學(xué)生對問題(1)采用了直接代入計(jì)算的方法得到結(jié)果,對問題(2)顯然用代入法難以得到結(jié)果,這時,我讓學(xué)生小組討論來解決。經(jīng)過討論后,學(xué)生A回答:“因?yàn)閗>0時,反比例函數(shù)y隨x的增大而減小,而a 4、在學(xué)習(xí)反思中的問題設(shè)計(jì) 初中學(xué)生學(xué)習(xí)數(shù)學(xué)的方法相對欠缺,學(xué)生“重結(jié)論,輕過程”的現(xiàn)象較普遍,對學(xué)習(xí)結(jié)果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學(xué)中要注重引導(dǎo),徹底分析錯因,讓學(xué)生在錯題中有反思的機(jī)會。例如,在一元一次方程的教學(xué)中,我發(fā)現(xiàn)學(xué)生解含有分母的方程時很容易出錯,針對學(xué)生做錯的題目,我設(shè)計(jì)了如的表格: 通過引導(dǎo)學(xué)生對錯因徹底分析與校正,學(xué)生明白了產(chǎn)生錯誤的真正原因是什么,認(rèn)識到了自己的不足。然后我出了幾道解方程的練習(xí),結(jié)果發(fā)現(xiàn),學(xué)生確實(shí)重視了錯誤,效果明顯有所好轉(zhuǎn)。 總之,在數(shù)學(xué)教學(xué)中,教學(xué)問題的設(shè)計(jì)確實(shí)是一種學(xué)問,是一種藝術(shù)。要讓學(xué)生在實(shí)實(shí)在在的問題情境中去親歷體驗(yàn),在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗(yàn)成功的'快樂,增強(qiáng)他們的自信心。 初中數(shù)學(xué)的教學(xué)設(shè)計(jì)3篇(數(shù)學(xué)初中教案設(shè)計(jì))相關(guān)文章: