亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

高中數(shù)學余弦定理教案3篇 余弦定理定理教案

時間:2023-01-03 09:52:00 教案

  下面是范文網(wǎng)小編收集的高中數(shù)學余弦定理教案3篇 余弦定理定理教案,歡迎參閱。

高中數(shù)學余弦定理教案3篇 余弦定理定理教案

高中數(shù)學余弦定理教案1

  一、教材分析

  1.地位及作用

"余弦定理"是人教A版數(shù)學必修5主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數(shù)學問題及生產、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。

  2.教學重、難點

  重點:余弦定理的證明過程和定理的簡單應用。

  難點:利用向量的數(shù)量積證余弦定理的思路。

  二、 教學目標

  知識目標:能推導余弦定理及其推論,能運用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。

  能力目標:培養(yǎng)學生知識的遷移能力;歸納總結的能力;運用所學知識解決實際問題的能力。

  情感目標:從實際問題出發(fā)運用數(shù)學知識解決問題這個過程體驗數(shù)學在實際生活中的運用,激發(fā)學生學習數(shù)學的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的理性和嚴謹。

  三、 教學方法

  數(shù)學課堂上首先要重視知識的發(fā)生過程,既能展現(xiàn)知識的獲取,又能暴露解決問題的思維。在本節(jié)教學中,我將遵循"提出問題、分析問題、解決問題 "的步驟逐步推進,以課堂教學的組織者、引導者、合作者的身份,組織學生探究、歸納、推導,引導學生逐個突破難點,師生共同解決問題,使學生在各種數(shù)學活動中掌握各種數(shù)學基本技能,初步學會從數(shù)學角度去觀察事物和思考問題,產生學習數(shù)學的愿望和興趣。

  四、 教學過程

  本節(jié)教學中通過創(chuàng)設情境,充分調動學生已有的學習經驗,讓學生經歷"現(xiàn)實問題轉化為數(shù)學問題"的過程,發(fā)現(xiàn)新的知識,把學生的潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實際操作,使剛產生的數(shù)學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。

  幫助學生從平面幾何、三角函數(shù)、向量知識等方面進行分析討論,選擇簡潔的處理工具,引發(fā)學生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉化為已知三角形兩邊長和夾角求第三邊的問題,即:在 中已知AC=b,AB=c和A,求a.

  學生對向量知識可能遺忘,注意復習;在利用數(shù)量積時,角度可能出現(xiàn)錯誤,出現(xiàn)不同的表示形式,讓學生從錯誤中發(fā)現(xiàn)問題,鞏固向量知識,明確向量工具的作用。同時,讓學生明確數(shù)學中的轉化思想:化未知為已知。將實際問題轉化成數(shù)學問題,引導學生分析問題。在 中已知a=5,b=7,c=8,求B.

  學生思考或者討論,若有同學答則順勢引出推論,若不能作答則由老師引導推出推論,然后返回解決該問題。

  讓學生觀察推論的特征,討論該推論有什么用。

高中數(shù)學余弦定理教案2

  一、教學內容分析

  人教版《普通高中課程標準實驗教科書·必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數(shù)量積方法推導余弦定理,正確理解其結構特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會余弦定理解決“邊、邊、角”,體會方程思想,激發(fā)學生探究數(shù)學,應用數(shù)學的潛能。

  二、學生學習情況分析

  本課之前,學生已經學習了三角函數(shù)、向量基本知識和正弦定理有關內容,對于三角形中的邊角關系有了較進一步的認識。在此基礎上利用向量方法探求余弦定理,學生已有一定的學習基礎和學習興趣??傮w上學生應用數(shù)學知識的意識不強,創(chuàng)造力較弱,看待與分析問題不深入,知識的系統(tǒng)性不完善,使得學生在余弦定理推導方法的探求上有一定的難度,在發(fā)掘出余弦定理的結構特征、表現(xiàn)形式的數(shù)學美時,能夠激發(fā)學生熱愛數(shù)學的思想感情;從具體問題中抽象出數(shù)學的本質,應用方程的思想去審視,解決問題是學生學習的一大難點。

  三、設計思想

  新課程的數(shù)學提倡學生動手實踐,自主探索,合作交流,深刻地理解基本結論的本質,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程,力求對現(xiàn)實世界蘊涵的一些數(shù)學模式進行思考,作出判斷;同時要求教師從知識的傳授者向課堂的設計者、組織者、引導者、合作者轉化,從課堂的執(zhí)行者向實施者、探究開發(fā)者轉化。本課盡力追求新課程要求,利用師生的互動合作,提高學生的數(shù)學思維能力,發(fā)展學生的數(shù)學應用意識和創(chuàng)新意識,深刻地體會數(shù)學思想方法及數(shù)學的應用,激發(fā)學生探究數(shù)學、應用數(shù)學知識的潛能。

  四、教學目標

  繼續(xù)探索三角形的邊長與角度間的具體量化關系、掌握余弦定理的兩種表現(xiàn)形式,體會向量方法推導余弦定理的思想;通過實踐演算運用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細化方程思想,理解余弦定理的本質。通過相關教學知識的聯(lián)系性,理解事物間的普遍聯(lián)系性。

  五、教學重點與難點

  教學重點是余弦定理的發(fā)現(xiàn)過程及定理的應用;教學難點是用向量的數(shù)量積推導余弦定理的思路方法及余弦定理在應用求解三角形時的思路。

  六、教學過程:

  七、教學反思

  本課的教學應具有承上啟下的目的。因此在教學設計時既要兼顧前后知識的聯(lián)系,又要使學生明確本課學習的重點,將新舊知識逐漸地融為一體,構建比較完整的知識系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結構特征上重加指導,只有當學生正確地理解了余弦定理的本質,才能更好地應用求解問題。本課教學設計力求在型(模型、類型),質(實質、本質),思(思維、思想方法)上達到教學效果。本課之前學生已學習過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡潔的工具。因此在本課的教學設計中抓住前后知識的聯(lián)系,重視數(shù)學思想的教學,加深對數(shù)學概念本質的理解,認識數(shù)學與實際的聯(lián)系,學會應用數(shù)學知識和方法解決一些實際問題。學生應用數(shù)學的意識不強,創(chuàng)造力不足、看待問題不深入,很大原因在于學生的知識系統(tǒng)不夠完善。因此本課運用聯(lián)系的觀點,從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對學生進行示范引導,將舊知識與新知識進行重組擬合及提高,幫助學生建立自己的良好知識結構。

高中數(shù)學余弦定理教案3

  一、單元教學內容

  運算定律P——P

  二、單元教學目標

  1、探索和理解加法交換律、結合律,乘法交換律、結合律和分配律,能運用運算定律進行一些簡便計算。

  2、理解和掌握減法和除法的運算性質,并能應用這些運算性質進行簡便計算。

  3、會應用運算律進行一些簡便運算,掌握運算技巧,提高計算能力。

  4、在經歷運算定律和運算性質的發(fā)現(xiàn)過程中,體驗歸納、總結和抽象的數(shù)學思維方法。

  5、在經歷運算定律的字母公式形成過程中,能進行有條理地思考,并表達自己的思考結果。

  6、經歷簡便計算過程,感受數(shù)的運算與日常生活的密切聯(lián)系,并在活動中學會與他人合作。

  7、在經歷解決問題的過程中,體驗運算律的`價值,增強應用數(shù)學的意識。

  三、單元教學重、難點

  1、理解加法交換律、結合律,乘法交換律、結合律和分配律,能運用運算定律進行一些簡便計算。

  2、理解和掌握減法和除法的運算性質,并能應用這些運算性質進行簡便計算。

  四、單元教學安排

  運算定律10課時

  第1課時 加法交換律和結合律

  一、教學內容:加法交換律和結合律P17——P18

  二、教學目標:

  1、在解決實際問題的過程中,發(fā)現(xiàn)并掌握加法交換律和結合律,學會用字母表示加法交換律和結合律。

  2、在探索運算律的過程中,發(fā)展分析、比較、抽象、概括能力,培養(yǎng)學生的符號感。

  3、培養(yǎng)學生的觀察能力和概括能力。

  三、教學重難點

  重點:發(fā)現(xiàn)并掌握加法交換律、結合律。

  難點:由具體上升到抽象,概括出加法交換律和加法結合律。

  四、教學準備

  多媒體課件

  五、教學過程

(一)導入新授

  1、出示教材第17頁情境圖。

  師:在我們班里,有多少同學會騎自行車?你最遠騎到什么地方? 師生交流后,課件出示李叔叔騎車旅行的場景:騎車是一項有益健康的運動,你看,這位李叔叔正在騎車旅行呢!

  2、獲取信息。

  師:從中你知道了哪些數(shù)學信息?(學生回答)

  3、師小結信息,引出課題:加法交換律和結合律。

(二)探索發(fā)現(xiàn)

  第一環(huán)節(jié) 探索加法交換律

  1、課件繼續(xù)出示:“李叔叔今天上午騎了40km,下午騎了56km,一共騎了多少千米?”

  學生口頭列式,教師板書出示: 40+56=96(千米) 56+40=96(千米) 你能用等號把這兩道算式寫成一個等式嗎? 40+56=56+40 你還能再寫出幾個這樣的等式嗎?

  學生獨自寫出幾個這樣的等式,并在小組內交流各自寫出的等式,互相檢驗

  寫出的等式是否符合要求。

  2、觀察寫出的這些算式,你有什么發(fā)現(xiàn)?并用自己喜歡的方式表示出來。 全班交流。從這些算式可以發(fā)現(xiàn):兩個數(shù)相加,交換加數(shù)的位置,和不變??梢杂梅杹肀硎荆?+☆=☆+?;

  可以用文字來表示:甲數(shù)十乙數(shù)=乙數(shù)十甲數(shù)。

  3、如果用字母a、b分別表示兩個加數(shù),又可以怎樣來表示發(fā)現(xiàn)的這個規(guī)律呢? a+b=b+a

  教師指出:這就是加法交換律。

  4、初步應用:在( )里填上合適的數(shù)。

  37+36=36+( )305+49=( )+305b+100=( )+b 47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二環(huán)節(jié) 探索加法結合律

  1、課件出示教材第18頁例2情境圖。

  師:從例2的情境圖中,你獲得了哪些信息?

  師生交流后提出問題:要求“李叔叔三天一共騎了多少千米”可以怎樣列式? 學生獨立列式,指名匯報。 匯報預設:

  方法一:先算出“第一天和第二天共騎了多少千米”: (88+104)+96=192+96 =288(千米)

  方法二:先算出“第二天和第三天共騎了多少千米”: 88+(104+96)=88+200=288(千米)

  把這兩道算式寫成一道等式:

(88+104)+96=88+(104+96)

  2、算一算,下面的○里能填上等號嗎?

(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)

  小組討論。先比較每組的兩個算式,再比較這三組算式,在小組里說說你有

  什么發(fā)現(xiàn)。

  集體交流,使學生明確:三個算式加數(shù)沒變,加數(shù)的位置也沒變,運算的順序變了,它們的和不變。也就是:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

  3、如果用字母a、b、c分別表示三個加數(shù),可以怎樣用字母來表示這個規(guī)律呢? (a+b)+c=a+(b+c)

  教師指出:這就是加法結合律。

  4、初步應用。

  在橫線上填上合適的數(shù)。 (45+36)+64=45+(36+) (560+)+ =560+(140+70) (360+)+108=360+(92+) (57+c)+d=57+(+)

(三)鞏固發(fā)散

  1、完成教材第18頁“做一做”。

  學生獨立填寫,組織匯報時,讓學生說說是根據(jù)什么運算律填寫的。

  2、下面各等式哪些符合加法交換律,哪些符合加法結合律?

(1)470+320=320+470

(2)a+55+45=55+45+a

(3)(27+65)+35=27+(65+35)

(4)70+80+40=70+40+80

(5)60+(a+50)=(60+a)+50

(6)b+900=900+b

(四)評價反饋

  通過今天這節(jié)課的學習,你有哪些收獲?

  師生交流后總結:學習了加法交換律和結合律,并知道了如何用符號和字母來表示發(fā)現(xiàn)的規(guī)律。

(五)板書設計

  加法交換律和結合律

  加法交換律加法結合律

  例1:李叔叔今天一共騎了多少千米? 例2:李叔叔三天一共騎了多少千米? 40+56=96(千米) (88+104) +96 88+(104+96) 56+40=96(千米)=192+96 =88+200=288(千米) =288(千米) 40+56=56+40 (88+104)+96=88+(104+96) a+b=b+a (a+b)+c=a+(b+c)

  兩個數(shù)相加,交換加數(shù)的位置,和不變。

  六、教學后記

  三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

高中數(shù)學余弦定理教案3篇 余弦定理定理教案相關文章:

小學數(shù)學一年級下冊第二單元教案2022范文3篇 人教版一年級數(shù)學下冊第二單元教案設計

蘇教版二年級數(shù)學下冊教案3篇 二年級下冊蘇教版數(shù)學教案全冊

一年級上數(shù)學的教案3篇 人教版一年級上數(shù)學教案詳案

關于數(shù)學一年級的教案3篇 小學數(shù)學一年級教案

一年級上冊數(shù)學2022最新加法教案3篇 人教版一年級上冊數(shù)學教案

一年級數(shù)學下教案設計方案2022文案3篇 小學數(shù)學一年級教案設計

小學數(shù)學北師大版一年級上冊教案最新范文3篇 北師大版小學數(shù)學一年級上冊全冊教案

數(shù)學人教版高二教案3篇 高一數(shù)學新教材第二冊教案

浙教版小學數(shù)學教案5篇 小學數(shù)學寫教案

數(shù)學數(shù)一數(shù)的教案3篇 小學數(shù)一數(shù)教案