下面是范文網小編分享的高二數學教案最新精選總結3篇 高二數學優(yōu)秀教案,供大家參閱。
高二數學教案最新精選總結1
教學準備
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學過程
1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并規(guī)定0向量與任何向量的數量積為0.
×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數量積與實數乘向量的積有什么區(qū)別?
(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.
(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區(qū)分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
高二數學教案最新精選總結2
教學準備
教學目標
1、數學知識:掌握等比數列的概念,通項公式,及其有關性質;
2、數學能力:通過等差數列和等比數列的類比學習,培養(yǎng)學生類比歸納的能力;
歸納——猜想——證明的數學研究方法;
3、數學思想:培養(yǎng)學生分類討論,函數的數學思想。
教學重難點
重點:等比數列的概念及其通項公式,如何通過類比利用等差數列學習等比數列;
難點:等比數列的性質的探索過程。
教學過程
教學過程:
1、問題引入:
前面我們已經研究了一類特殊的數列——等差數列。
問題1:滿足什么條件的數列是等差數列?如何確定一個等差數列?
(學生口述,并投影):如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。
要想確定一個等差數列,只要知道它的首項a1和公差d。
已知等差數列的首項a1和d,那么等差數列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數列的關鍵是一個“差”字,即如果一個數列,從第2項起,每一項與它前一項的差等于同一個常數,那么這個數列就叫做等差數列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數列,從第2項起,每一項與它的前一項的……等于同一個常數,那么這個數列叫做……數列。
(這里以填空的形式引導學生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數的話,這個數列是一個各項重復出現的“周期數列”,而與等差數列最相似的是“比”為同一個常數的情況。而這個數列就是我們今天要研究的等比數列了。)
2、新課:
1)等比數列的定義:如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,那么這個數列就叫做等比數列。這個常數叫做公比。
師:這就牽涉到等比數列的通項公式問題,回憶一下等差數列的通項公式是怎樣得到的?類似于等差數列,要想確定一個等比數列的通項公式,要知道什么?
師生共同簡要回顧等差數列的通項公式推導的方法:累加法和迭代法。
公式的推導:(師生共同完成)
若設等比數列的公比為q和首項為a1,則有:
方法一:(累乘法)
3)等比數列的性質:
下面我們一起來研究一下等比數列的性質
通過上面的研究,我們發(fā)現等比數列和等差數列之間似乎有著相似的地方,這為我們研究等比數列的性質提供了一條思路:我們可以利用等差數列的性質,通過類比得到等比數列的性質。
問題4:如果{an}是一個等差數列,它有哪些性質?
(根據學生實際情況,可引導學生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個等比數列的第二項是2,第三項與第四項的和是12,求它的第八項的值。
答案:1458或128。
例2、正項等比數列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
例3、已知一個等差數列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個數列中取出一些項組成一個新的數列{cn},使得{cn}是一個公比為2的等比數列,若能請指出{cn}中的第k項是等差數列中的第幾項?
(本題為開放題,沒有的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數列中的第2k-1項。關鍵是對通項公式的理解)
1、小結:
今天我們主要學習了有關等比數列的概念、通項公式、以及它的性質,通過今天的學習
我們不僅學到了關于等比數列的有關知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。
2、作業(yè):
P129:1,2,3
思考題:在等差數列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項:6,12,24,48,……,組成一個新的數列{cn},{cn}是一個公比為2的等比數列,請指出{cn}中的第k項是等差數列中的第幾項?
教學設計說明:
1、教學目標和重難點:首先作為等比數列的第一節(jié)課,對于等比數列的概念、通項公式及其性質是學生接下來學習等比數列的基礎,是必須要落實的;其次,數學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數列是在等差數列之后學習的因此對等比數列的學習必然要和等差數列結合起來,通過等比數列和等差數列的類比學習,對培養(yǎng)學生類比——猜想——證明的科學研究方法是有利的。這也就成了本節(jié)課的重點。
2、教學設計過程:本節(jié)課主要從以下幾個方面展開:
1)通過復習等差數列的定義,類比得出等比數列的定義;
2)等比數列的通項公式的推導;
3)等比數列的性質;
有意識的引導學生復習等差數列的定義及其通項公式的探求思路,一方面使學生回顧舊
知識,另一方面使學生通過聯想,為類比地探索等比數列的定義、通項公式奠定基礎。
在類比得到等比數列的定義之后,再對幾個具體的數列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規(guī)律,使學生體會觀察、類比、歸納等合情推理方法的應用。培養(yǎng)學生應用知識的能力。
在得到等比數列的定義之后,探索等比數列的通項公式又是一個重點。這里通過問題3的設計,使學生產生不得不考慮通項公式的心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。
通過等差數列和等比數列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數列的性質,做好鋪墊。
等比性質的研究是本節(jié)課的,通過類比
關于例題設計:重知識的應用,具有開放性,為使學生更好的掌握本節(jié)課的內容。
高二數學教案最新精選總結3
教學準備
教學目標
1、知識與技能
(1)了解周期現象在現實中廣泛存在;(2)感受周期現象對實際工作的意義;(3)理解周期函數的概念;(4)能熟練地判斷簡單的實際問題的周期;(5)能利用周期函數定義進行簡單運用。
2、過程與方法
通過創(chuàng)設情境:單擺運動、時鐘的圓周運動、潮汐、波浪、四季變化等,讓學生感知周期現象;從數學的角度分析這種現象,就可以得到周期函數的定義;根據周期性的定義,再在實踐中加以應用。
3、情感態(tài)度與價值觀
通過本節(jié)的學習,使同學們對周期現象有一個初步的認識,感受生活中處處有數學,從而激發(fā)學生的學習積極性,培養(yǎng)學生學好數學的信心,學會運用聯系的觀點認識事物。
教學重難點
重點:感受周期現象的存在,會判斷是否為周期現象。
難點:周期函數概念的理解,以及簡單的應用。
教學工具
投影儀
教學過程
【創(chuàng)設情境,揭示課題】
同學們:我們生活在海南島非常幸福,可以經??吹酱蠛?,陶冶我們的情操。眾所周知,海水會發(fā)生潮汐現象,大約在每一晝夜的時間里,潮水會漲落兩次,這種現象就是我們今天要學到的周期現象。再比如,[取出一個鐘表,實際操作]我們發(fā)現鐘表上的時針、分針和秒針每經過一周就會重復,這也是一種周期現象。所以,我們這節(jié)課要研究的主要內容就是周期現象與周期函數。(板書課題)
【探究新知】
1.我們已經知道,潮汐、鐘表都是一種周期現象,請同學們觀察錢塘江潮的圖片(投影圖片),注意波浪是怎樣變化的?可見,波浪每隔一段時間會重復出現,這也是一種周期現象。請你舉出生活中存在周期現象的例子。(單擺運動、四季變化等)
(板書:一、我們生活中的周期現象)
2.那么我們怎樣從數學的角度研究周期現象呢?教師引導學生自主學習課本P3——P4的相關內容,并思考回答下列問題:
①如何理解“散點圖”?
②圖1-1中橫坐標和縱坐標分別表示什么?
③如何理解圖1-1中的“H/m”和“t/h”?
④對于周期函數的定義,你的理解是怎樣?
以上問題都由學生來回答,教師加以點撥并總結:周期函數定義的理解要掌握三個條件,即存在不為0的常數T;x必須是定義域內的任意值;f(x+T)=f(x)。
(板書:二、周期函數的概念)
3.[展示投影]練習:
(1)已知函數f(x)滿足對定義域內的任意x,均存在非零常數T,使得f(x+T)=f(x)。
求f(x+2T),f(x+3T)
略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
本題小結,由學生完成,總結出“周期函數的周期有無數個”,教師指出一般情況下,為避免引起混淆,特指最小正周期。
(2)已知函數f(x)是R上的周期為5的周期函數,且f(1)=2005,求f(11)
略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005
(3)已知奇函數f(x)是R上的函數,且f(1)=2,f(x+3)=f(x),求f(8)
略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2
【鞏固深化,發(fā)展思維】
1.請同學們先自主學習課本P4倒數第五行——P5倒數第四行,然后各個學習小組之間展開合作交流。
2.例題講評
例1.地球圍繞著太陽轉,地球到太陽的距離y是時間t的函數嗎?如果是,這個函數
y=f(t)是不是周期函數?
例2.圖1-4(見課本)是鐘擺的示意圖,擺心A到鉛垂線MN的距離y是時間t的函數,y=g(t)。根據鐘擺的知識,容易說明g(t+T)=g(t),其中T為鐘擺擺動一周(往返一次)所需的時間,函數y=g(t)是周期函數。若以鐘擺偏離鉛垂線MN的角θ的度數為變量,根據物理知識,擺心A到鉛垂線MN的距離y也是θ的周期函數。
例3.圖1-5(見課本)是水車的示意圖,水車上A點到水面的距離y是時間t的函數。假設水車5min轉一圈,那么y的值每經過5min就會重復出現,因此,該函數是周期函數。
3.小組課堂作業(yè)
(1)課本P6的思考與交流
(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期幾?7k(k∈Z)天前的那一天是星期幾?100天后的那一天是星期幾?
五、歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現怎樣?你的體會是什么?
六、布置作業(yè)
1.作業(yè):習題1.1第1,2,3題.
2.多觀察一些日常生活中的周期現象的例子,進一步理解它的特點.
課后小結
歸納整理,整體認識
(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現怎樣?你的體會是什么?
課后習題
作業(yè)
1.作業(yè):習題1.1第1,2,3題.
2.多觀察一些日常生活中的周期現象的例子,進一步理解它的特點.
板書
略
高二數學教案最新精選總結3篇 高二數學優(yōu)秀教案相關文章:
★ 小班數學排序教案4篇(幼兒小班數學排序優(yōu)質課教案)
★ 小班數學教案水果涂色3篇 小班美術《水果涂色》教案涂色反思
★ 人教版二年級數學上冊教案及反思最新例文3篇(人教版小學二年級上冊數學教案及反思)
★ 數學5以內的序數中班教案15篇(中班數學《5以內的序數》教案)
★ 人教版三年級下冊數學教案7篇 小學人教版三年級數學下冊教案
★ 四年級數學上冊教案全冊模板3篇 小學數學四年級數學上冊教案