下面是范文網(wǎng)小編收集的初中數(shù)學(xué)知識(shí)點(diǎn)9篇,歡迎參閱。
初中數(shù)學(xué)知識(shí)點(diǎn)1
數(shù)據(jù)的分析
將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
一組數(shù)據(jù)中的'最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。
方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。
數(shù)據(jù)的收集與整理的步驟:1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫(xiě)調(diào)查報(bào)告
初中數(shù)學(xué)知識(shí)點(diǎn)2
直線、射線、線段
?。?)直線、射線、線段的表示方法
?、僦本€:用一個(gè)小寫(xiě)字母表示,如:直線l,或用兩個(gè)大寫(xiě)字母(直線上的)表示,如直線AB。
?、谏渚€:是直線的一部分,用一個(gè)小寫(xiě)字母表示,如:射線l;用兩個(gè)大寫(xiě)字母表示,端點(diǎn)在前,如:射線OA。注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊。
?、劬€段:線段是直線的一部分,用一個(gè)小寫(xiě)字母表示,如線段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線段AB(或線段BA)。
?。?)點(diǎn)與直線的位置關(guān)系:
?、冱c(diǎn)經(jīng)過(guò)直線,說(shuō)明點(diǎn)在直線上;
?、邳c(diǎn)不經(jīng)過(guò)直線,說(shuō)明點(diǎn)在直線外。
兩點(diǎn)間的距離
(1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線段的長(zhǎng)度叫兩點(diǎn)間的距離。
(2)平面上任意兩點(diǎn)間都有一定距離,它指的是連接這兩點(diǎn)的線段的長(zhǎng)度,學(xué)習(xí)此概念時(shí),注意強(qiáng)調(diào)最后的`兩個(gè)字“長(zhǎng)度”,也就是說(shuō),它是一個(gè)量,有大小,區(qū)別于線段,線段是圖形。線段的長(zhǎng)度才是兩點(diǎn)的距離??梢哉f(shuō)畫(huà)線段,但不能說(shuō)畫(huà)距離。
正方體
(1)對(duì)于此類(lèi)問(wèn)題一般方法是用紙按圖的樣子折疊后可以解決,或是在對(duì)展開(kāi)圖理解的基礎(chǔ)上直接想象。
?。?)從實(shí)物出發(fā),結(jié)合具體的問(wèn)題,辨析幾何體的展開(kāi)圖,通過(guò)結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類(lèi)問(wèn)題的關(guān)鍵。
?。?)正方體的展開(kāi)圖有11種情況,分析平面展開(kāi)圖的各種情況后再認(rèn)真確定哪兩個(gè)面的對(duì)面。
初中數(shù)學(xué)知識(shí)點(diǎn)3
把一元二次方程化成ax2+bx+c的一般形式,然后把各項(xiàng)系數(shù)a, b, c的值代入求根公式就可得到方程的根。
公式法
公式:x=[-b±√(b2-4ac)]/2a
當(dāng)Δ=b2-4ac>0時(shí),求根公式為x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(兩個(gè)不相等的實(shí)數(shù)根)
當(dāng)Δ=b2-4ac=0時(shí),求根公式為x1=x2=-b/2a(兩個(gè)相等的實(shí)數(shù)根)
當(dāng)Δ=b2-4ac<0時(shí),求根公式為x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a
例3.用公式法解方程 2x2-8x=-5
解:將方程化為一般形式:2x2-8x+5=0
∴a=2, b=-8,c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= (4±√6)/2
∴原方程的`解為x?=(4+√6)/2,x?=(4-√6)/2.
大家不知道的是兩個(gè)復(fù)數(shù)根在初中數(shù)學(xué)的學(xué)習(xí)中理解為無(wú)實(shí)數(shù)根。
初中數(shù)學(xué)知識(shí)點(diǎn)4
菱形
1、菱形的定義 :有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴ 矩形具有平行四邊形的一切性質(zhì);
?、?菱形的四條邊都相等;
⑶ 菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
?、?菱形是軸對(duì)稱(chēng)圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,
可得對(duì)角線與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的平方和。
3、菱形的判定方法:
?、?定義:一組鄰邊相等的平行四邊形是菱形。
⑵ 判斷方法1:對(duì)角線互相垂直的平行四邊形是菱形。
⑶ 判斷方法2:四條邊相等的四邊形是菱形。
4、菱形面積的計(jì)算:
菱形面積 = 底×高 = 對(duì)角線長(zhǎng)乘積的一半 S菱形=1/2×ab(a、b為兩條對(duì)角線)
歸納:對(duì)角線互相垂直的四邊形的面積等于對(duì)角線長(zhǎng)乘積的一半。
希望上面對(duì)菱形知識(shí)點(diǎn)的總結(jié)學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們一定能很好的參加考試工作。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
?、僬较虻囊?guī)定橫軸取向右為正方向,縱軸取向上為正方向
?、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的`多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
?、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
?、诓粶?zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
?、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
?、菹嗤蚴綄?xiě)成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
?、呃ㄌ?hào)內(nèi)同類(lèi)項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)5
圓周角知識(shí)點(diǎn)
1、定義:頂點(diǎn)在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對(duì)的弧相等。
2)直徑(半圓)所對(duì)的圓周角是直角;900的圓周角所對(duì)的弦為直徑。(①常見(jiàn)輔助線:有直徑可構(gòu)成直角,有900圓周角可構(gòu)成直徑;②找圓心的方法:作兩個(gè)900圓周角所對(duì)兩弦交點(diǎn))
4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對(duì)角互補(bǔ)。(任意一個(gè)外角等于它的內(nèi)對(duì)角)
補(bǔ)充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時(shí),所夾角等于它所對(duì)的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時(shí),所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對(duì)的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。
平均數(shù)中位數(shù)與眾數(shù)知識(shí)點(diǎn)
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
有理數(shù)知識(shí)點(diǎn)
1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負(fù)號(hào)“-”的數(shù)叫做負(fù)數(shù)。
3.整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)為有理數(shù)。
4.人們通常用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)。
6.一般的,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的`距離叫做數(shù)a的絕對(duì)值。
7.由絕對(duì)值的定義可知:
一個(gè)正數(shù)的絕對(duì)值是它本身;
一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);
0的絕對(duì)值是0。
8.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9.兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
10.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
(2)絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的負(fù)號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
11.有理數(shù)的加法中,兩個(gè)數(shù)相加,交換交換加數(shù)的位置,和不變。
12.有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
13.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
14.有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值向乘。任何數(shù)同0相乘,都得0。
15.有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù)。
16.一般的,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。
17.三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。
18.一般地,一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
19.有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
20.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0。
初中數(shù)學(xué)知識(shí)點(diǎn)6
【知識(shí)點(diǎn)】:
1、零下溫度的表示方法,在溫度前面寫(xiě)上“—”號(hào),如“—2℃”“—12℃”通常讀作零下2攝氏度、零下12攝氏度。
2、能夠正確地比較兩個(gè)零下的溫度的高低:0℃和零上的溫度高于零下的溫度;零下溫度的數(shù)字越大表示溫度越低。
正負(fù)數(shù)
生活中的負(fù)數(shù)
1、正數(shù):比0大的`數(shù)字都是正數(shù),有的時(shí)候我們?cè)谡龜?shù)前面添上“+”號(hào),如+5、+20等等,讀作:正5、正20。
2、負(fù)數(shù):比0小的數(shù)字都是負(fù)數(shù),我們?cè)谪?fù)數(shù)前面提案上“—”號(hào),如—2、—10等等,讀作:負(fù)2、負(fù)10。
3、明確0既不是正數(shù)也不是負(fù)數(shù)。
能用正數(shù)、負(fù)數(shù)表示實(shí)際問(wèn)題,要確定以什么作為標(biāo)準(zhǔn)(即以什么作0點(diǎn))
初中數(shù)學(xué)知識(shí)點(diǎn)7
橢圓知識(shí):平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動(dòng)點(diǎn)P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點(diǎn)F1、F2叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動(dòng)點(diǎn)。
長(zhǎng)軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內(nèi)到定點(diǎn)F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點(diǎn)的集合(定點(diǎn)F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點(diǎn)F為橢圓的焦點(diǎn),定直線稱(chēng)為橢圓的準(zhǔn)線(該定直線的方程是x=±a^2/c[焦點(diǎn)在X軸上];或者y=±a^2/c[焦點(diǎn)在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點(diǎn)與橢圓短軸兩端點(diǎn)連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點(diǎn)的連線的斜率之積是常數(shù)k的動(dòng)點(diǎn)的軌跡是橢圓,此時(shí)k應(yīng)滿足一定的條件,也就是排除斜率不存在的情況,還有K應(yīng)滿足<0且不等于-1。
簡(jiǎn)單幾何性質(zhì)
1、范圍
2、對(duì)稱(chēng)性:關(guān)于X軸對(duì)稱(chēng),Y軸對(duì)稱(chēng),關(guān)于原點(diǎn)中心對(duì)稱(chēng)。
3、頂點(diǎn):(當(dāng)中心為原點(diǎn)時(shí))(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率范圍 0
知識(shí)歸納:離心率越大橢圓就越扁,越小則越接近于圓。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
?、僬较虻囊?guī)定橫軸取向右為正方向,縱軸取向上為正方向
?、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
?、巯笙薜囊?guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的'對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
?、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
?、俨粶?zhǔn)丟字母
?、诓粶?zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
?、垭p重括號(hào)化成單括號(hào)
?、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫(xiě)成冪的形式
?、奘醉?xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類(lèi)項(xiàng)合并。
初中數(shù)學(xué)知識(shí)點(diǎn)8
圓的知識(shí):平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
圓心:
(1)如定義(1)中,該定點(diǎn)為圓心
(2)如定義(2)中,繞的那一端的端點(diǎn)為圓心。
(3)圓任意兩條對(duì)稱(chēng)軸的交點(diǎn)為圓心。
(4) 垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。
注:圓心一般用字母O表示
直徑:通過(guò)圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無(wú)數(shù)條。圓是軸對(duì)稱(chēng)圖形,每條直徑所在的直線是圓的對(duì)稱(chēng)軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
圓的周長(zhǎng):圍成圓的曲線的長(zhǎng)度叫做圓的周長(zhǎng),用字母C表示。
圓的周長(zhǎng)與直徑的比值叫做圓周率。
圓的周長(zhǎng)除以直徑的商是一個(gè)固定的數(shù),把它叫做圓周率,它是一個(gè)無(wú)限不循環(huán)小數(shù)(無(wú)理數(shù)),用字母π表示。計(jì)算時(shí),通常取它的`近似值,π≈3.14。
直徑所對(duì)的圓周角是直角。90°的圓周角所對(duì)的弦是直徑。
圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母S表示。
一條弧所對(duì)的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
初中數(shù)學(xué)知識(shí)點(diǎn)9
不等式的判定知識(shí)點(diǎn)
1.常見(jiàn)的不等號(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
2.在不等式“a>b”或“a
3.不等號(hào)的開(kāi)口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;
4.在列不等式時(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等。
初中數(shù)學(xué)不等式的性質(zhì)知識(shí)點(diǎn)
不等式的性質(zhì)
?、偃绻鹸>y,那么yy;(對(duì)稱(chēng)性)
?、谌绻鹸>y,y>z;那么x>z;(傳遞性)
?、廴绻鹸>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法原則)
?、苋绻鹸>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
?、奕绻鹸>y,m>n,那么x+m>y+n;(充分不必要條件)
?、呷绻鹸>y>0,m>n>0,那么xm>yn;
⑧如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))[1]
初中數(shù)學(xué)不等式知識(shí)點(diǎn)歸納
1、概念:
在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式、例如2x+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等>x是超越不等式。
2、分類(lèi):
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的'大于號(hào)、小于號(hào)“>”“<”連接的.不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))
“≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。
我們大家在判定不等式時(shí)要記得,在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式。
初三數(shù)學(xué)不等式證明知識(shí)點(diǎn)總結(jié)
1、比較法:包括比差和比商兩種方法。
2、綜合法
證明不等式時(shí),從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導(dǎo)出要證明的命題的方法稱(chēng)為綜合法,它是由因?qū)Ч姆椒ā?/p>
3、分析法
證明不等式時(shí),從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結(jié)為一個(gè)已經(jīng)證明過(guò)的定理、簡(jiǎn)單事實(shí)或題設(shè)的條件,這種證明的方法稱(chēng)為分析法,它是執(zhí)果索因的方法。
4、放縮法
證明不等式時(shí),有時(shí)根據(jù)需要把需證明的不等式的值適當(dāng)放大或縮小,使其化繁為簡(jiǎn),化難為易,達(dá)到證明的目的,這種方法稱(chēng)為放縮法。
5、數(shù)學(xué)歸納法
用數(shù)學(xué)歸納法證明不等式,要注意兩步一結(jié)論。
在證明第二步時(shí),一般多用到比較法、放縮法和分析法。
6、反證法
證明不等式時(shí),首先假設(shè)要證明的命題的反面成立,把它作為條件和其他條件結(jié)合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個(gè)與命題的'條件或已證明的定理或公認(rèn)的簡(jiǎn)單事實(shí)相矛盾的結(jié)論,以此說(shuō)明原假設(shè)的結(jié)論不成立,從而肯定原命題的結(jié)論成立的方法稱(chēng)為反證法。
初中數(shù)學(xué)知識(shí)點(diǎn)9篇相關(guān)文章:
★ 初中數(shù)學(xué)教學(xué)心得9篇 初中數(shù)學(xué)心得
★ 初中數(shù)學(xué)教學(xué)總結(jié)5篇 初中數(shù)學(xué)課程教學(xué)總結(jié)
★ 初中數(shù)學(xué)學(xué)期教學(xué)計(jì)劃6篇(八年級(jí)上冊(cè)數(shù)學(xué)學(xué)期教學(xué)計(jì)劃)
★ 初中數(shù)學(xué)教師工作總結(jié)12篇(初中數(shù)學(xué)教師年度個(gè)人總結(jié))
★ 初中數(shù)學(xué)說(shuō)課稿(錦集7篇)
★ 初中數(shù)學(xué)學(xué)期教學(xué)計(jì)劃7篇(八年級(jí)上冊(cè)數(shù)學(xué)學(xué)期教學(xué)計(jì)劃)
★ 初中數(shù)學(xué)上冊(cè)教學(xué)計(jì)劃7篇(七年級(jí)數(shù)學(xué)上冊(cè)教學(xué)計(jì)劃免費(fèi))
★ 初中數(shù)學(xué)教學(xué)工作計(jì)劃3篇(初中數(shù)學(xué)教學(xué)計(jì)劃安排)
★ 初中數(shù)學(xué)教學(xué)心得11篇(自學(xué)初中數(shù)學(xué)心得)