亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

平行四邊形教案范文3篇 19.2平行四邊形教案

時間:2023-10-05 17:47:00 教案

  下面是范文網小編分享的平行四邊形教案范文3篇 19.2平行四邊形教案,供大家閱讀。

平行四邊形教案范文3篇 19.2平行四邊形教案

平行四邊形教案范文1

  學習目標:

  1、理解并掌握平行四邊形的定義

  2、掌握平行四邊形的性質定理1及性質定理2

  3、提高綜合運用知識的能力

  預習指導:

  1、在四邊形中,最常見、價值最大的是平行四邊形,生活中也常見平行四邊形的實例,如________________ _____________________________ ______等,都是平行四邊形。

  2、____________________________________是平行四邊形。

  3、平行四邊形的性質是:_________________________________________.

  學習過程:

  一、學習新知

  1、平行四邊形的定義

 ?。?)定義:________________ ________________________叫做平行四邊形。

 ?。?)幾何語言表述: ∵ AB∥CD AD∥BC ∴四邊形ABCD是平行四邊形

 ?。?)定義的`雙重性: 具備_____ _____________的四邊形,才是平行四邊形,

  反過來,平行四邊形就一定具有性質。

 ?。?)平行四邊形的表示:平行四邊形ABCD 記作_________,讀作___________.

  2、平行四邊形的性質

  平行四邊形是一種特殊的四邊形,它除具有四邊形的性質和兩組對邊分別平行外,還有什么特殊的性質呢?

  已知:如圖 ABCD,

  求證:AB=CD,CB=AD.

  分析:要證AB=CD,CB=AD.我們可以考慮只要證明四條線段所在的兩個三角形全等,因此我們可以作輔助線_____ _____________,它將平行四邊形分成_________和__________,我們只要證明這兩個三角形全等即可得到結論.

  證明:

  總結:本題提供了證明線段相等的方法,也體現(xiàn)了數(shù)學中的轉化思想。

  在上題中你能證明∠B=∠D, ∠BAD=∠BCD嗎?利用我們學過的方法試一試。

  證明:

  通過上面的證明,我們得到了:

  平行四邊形的性質定理1是_______________________________________.

  平行四邊形的性質定理2是_______________________________________.

  二、應用舉例:

  例1、如圖,在平行四邊形ABCD中,AE=CF,求證:AF=CE.

  例2、(1)在平行四邊形ABCD中,∠A=500,求∠B、∠C、∠D的度數(shù)。

 ?。?)在平行四邊形ABCD中,∠A=∠B+400,求∠A的鄰角的 度數(shù)。

  例1、如圖,在平行四邊形ABC D中,AE=CF,求證:AF=CE.

  例2、(1)在平行四邊形ABCD中,∠A=500,求∠B、∠C、∠D的度數(shù)。

  (2)在平行四邊形ABCD中,∠A=∠B+400,求∠A的鄰角的度數(shù)。

  三、隨堂練習

  1.平行四邊形的兩鄰邊的比是2:5,周長為28cm,求四邊形的各邊的長。

  2、在平行四邊形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度數(shù)。

  四、課堂小結 :

  1、平行四邊形的概念。

  2、平行四邊形的性質定理及其應用。

  五、當堂檢測

  1.(選擇)在下列圖形的性質中,平行四邊形不一定具有的是( ).

 ?。ˋ)對角相等 (B)對角互補 (C)鄰角互補 (D)內角和是

  2.(選擇)如圖,在 ABCD中,如果EF∥AD,GH∥CD,

  EF與GH相交與點O,那么圖中的平行四邊形一共有( ).

 ?。ˋ)4個 (B)5個 (C)8個 (D)9個

  3.如圖,在 ABCD中,AC為對角線,BE⊥AC,DF⊥AC,E、F為垂足,求證:BE=DF.

平行四邊形教案范文2

  教學目標

  1.進一步認識平行四邊形是中心對稱圖形。

  2.掌握平行四邊形的對角線之間的位置關系與數(shù)量關系,并能運用該特征進行簡單的計算和證明。

  3.充分利用平面圖形的旋轉變換探索平行四邊形的等量關系,進一步培養(yǎng)學生分析問題、探索問題的能力,培養(yǎng)學生的動手能力。

  教學重點與難點

  重點:利用平行四邊形的特征與性質,解決簡單的推理與計算問題。

  難點:發(fā)展學生的合情推理能力。

  教學準備直尺、方格紙。

  教學過程

  一、提問。

  1.平行四邊形的特征:對邊( ),對角( )。

  2.如圖,在平行四邊形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D與∠DAE分別等于多少度?為什么? (讓學生回憶平行四邊形的特征。)

  二、引導觀察。

  1.按照課本第30頁“探索”畫一個平行四邊形ABCD,對角線AC、BD相交于點 O,量一量并觀察,OA與OC、OB與OD的關系。

  2.在如課本圖12。1。3那樣的旋轉過程當中,你觀察到OA與OC、OB與 OD的關系了嗎?

  通過探索,引導學生得出結論:OA=OC,OB=OD。同時又引導學生說出平行四邊形的特征:平行四邊形的對角線互相平分。

  (培養(yǎng)學生用自己的語言敘述性質。)

  三、應用舉例。

  如圖,在平行四邊形ABCD中,兩條對角線AC、BD相交于點O。指出圖中相等的線段。

  (引導學生得出結論:AO=OC,OD=OB,AB=CD,AD=BC。本題目的是讓學生初步掌握平行四邊形對角線互相平分以及對邊相等的應用。)

  例3 如圖,在平行四邊形ABCD中,已知對角線AC和BD相交相于點O,△AOB的周長為15,AB=6,那么對角線AC與BD的和是多少?

  (本題應讓學生回答,老師板演。注意條理性,進一步培養(yǎng)學生數(shù)學說理的習慣與能力。)

  四、鞏固練習。

  1.如圖,在平行四邊形ABCD中,對角線AC與BD相交于點O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四邊形ABCD中,對角線AC與BD相交于點O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周長是( ),△BOC的周長是( )。

  3.平行四邊形ABCD的兩條對角線AC與BD相交于點O,已知AB=8厘米,BC =6厘米,△AOB的周長是18厘米,那么△AOD的周長是( )厘米。

  4。試一試。

  在方格紙上畫兩條互相平行的直線,在其中一條直線上任取若干點,過這些點作另一條直線的垂線,用刻度尺度量出平行線之間的`垂線段的長度。得到平行線又一性質:平行線之間的距離處處相等。

  5.練習。

  如圖,如果直線l1∥l2.那么△ABC的面積和△DBC的面積是相等的。你能說出理由嗎?你還能在兩條平行線I1、l2之間畫出其他與△ABC面積相等的三角形嗎?

  五、看誰做得又快又正確?

  課本第34頁練習的第一題。

  六、課堂小結

  這節(jié)課你有什么收獲?學到了什么?還有哪些需要老師幫你解決的問題?

  七、作業(yè)

  補充習題

平行四邊形教案范文3

  教學內容:

  教科書數(shù)學第八冊第22~26頁

  教學目標:

  1.通過觀察操作認識平行四邊形的特征,使學生在理解的基礎上掌握平行四邊形的面積計算公式,能正確地計算平行四邊形的面積。

  2.經歷探索平行四邊形面積計算公式的過程,使學生初步認識轉化的思考方法在研究平行四邊形面積時的運用。

  3.培養(yǎng)觀察、比較、推理和概括能力,滲透轉化思想的空間觀念。

  教學重難點:

  探索平行四邊形面積計算公式的推導過程。

  教具準備:

  1.課件

  2.教師準備一個平行四邊形的紙片。

  3.學生準備好學具

  教學過程:

  活動一:認識平行四邊形的特征。

  信息窗1,學生觀察。

  師:你發(fā)現(xiàn)了什么信息?你想提一個什么數(shù)學問題?學生以小組為單位討論。

 ?。ㄉ涣饔懻摰那闆r)

  平行四邊形的特征:對邊平行且相等,對角相等。

  師:什么叫平行四邊形?(兩組對邊分別平行的四邊形叫做平行四邊形。)

  師:先領學生復習平行四邊形的底和高。再讓學生指出平行四邊形的底,指出它的高來。然后讓每個學生在自己準備的平行四邊形上畫高。(教師巡視,注意畫得是否正確。)

  活動二:學習平行四邊形面積的計算公式。

  師:解決1號蝦池的面積是多少。

  我們已經知道1號蝦池的形狀是平行四邊形的,要求1號蝦池的面積,就是求平行四邊形的面積,那么怎樣求平行四邊形的面積?請大家猜測一下。

  學生活動:用手中的學具操作一下。

  師:現(xiàn)在交流你們想出的方法。

  師:同學們有各自的猜想,到底誰的對呢?用什么辦法來驗證。

  師:哪個小組來匯報一下你們是怎樣來驗證的 ,你們的結論是什么?

  提問:它們的面積怎么樣?平行四邊形的底和長方形的長怎么樣?平行四邊形的高和長方形的寬呢?

  啟發(fā)學生把比較的結果重復說一遍。平行四邊形的底和長方形的長,平行四邊形的高和長方形的寬分別相等,它們的面積也相等。

  通過操作總結平行四邊形面積的計算公式。

 ?。?)從上面的比較中,你發(fā)現(xiàn)平行四邊形的底、高和面積與長方形的長、寬和面積之間有什么聯(lián)系?你能不能把一個平行四邊形轉化成一個長方形呢?想一想,該怎么做?讓學生拿出準備好的平行四邊形進行剪拼。(學生剪拼時,教師巡視。)然后指名到前邊演示。

 ?。?)教師示范平行四邊形轉化成長方形的過程。

  剛才發(fā)現(xiàn)同學們把平行四邊形轉化成長方形時,就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長方形。在變換圖形的`位置時,怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在演示。

  教師歸納整理:任意一個平行四邊形都可以轉化成一個長方形,它的面積和原來的平行四邊形的面積相等,它的長、寬分別和原來的平行四邊形的底、高相等。

  引導學生總結平行四邊形面積計算公式。

  這個長方形的面積怎么求?(指名回答后,在長方形右面板書:長方形的面積=長寬)

  那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底高。)

  教學用字母表示平行四邊形的面積公式。

  板書:S=ah,

  S=ah,或者S=ah。

  應用總結出的面積公式計算平行四邊形的面積。

  師:現(xiàn)在來求:1號蝦池的面積是多少?

  學生列式:90X60=5400(平方米)

  活動三:

  解決2號蝦池能放養(yǎng)多少尾蝦苗?

  交流答案,交流解題思路。

  活動四:鞏固練習

  自主練習的1、2、5

  活動五:

  課堂小結:

  這節(jié)課我們共同研究了什么?

  怎樣求平行四邊形的面積?

  平行四邊形的面積計算公式是怎樣推導出來的?

平行四邊形教案范文3篇 19.2平行四邊形教案相關文章:

實用的平行四邊形教案5篇(平行四邊形教具)

平行四邊形教案3篇(平行四邊形和梯形教案)

實用的平行四邊形教案范文6篇 平行四邊形教案 小學四年級

實用的平行四邊形教案范文6篇(平行四邊形教學方法)

小學四年級數(shù)學平行四邊形和梯形教案6篇 人教版四年級平行四邊形和梯形的教學設計

認識平行四邊形教案【匯總14篇】

數(shù)學《平行四邊形的面積》教案【合集7篇】

數(shù)學《平行四邊形的面積》教案(合集11篇)

《平行四邊形的面積》教案及反思范文3篇(平行四邊形面積優(yōu)秀教案)

人教四年級數(shù)學上冊平行四邊形教案設計范文3篇 四年級上冊數(shù)學平行四邊形教學設計