下面是范文網(wǎng)小編收集的八年級數(shù)學(xué)教案模板3篇,歡迎參閱。
八年級數(shù)學(xué)教案模板1
教材分析
1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式
1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。
2、用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習態(tài)度和方法。
學(xué)情分析
1、在學(xué)習本課之前應(yīng)具備的基本知識和技能:
?、偻愴椀亩x。
?、诤喜⑼愴椃▌t
③多項式乘以多項式法則。
2、學(xué)習者對即將學(xué)習的內(nèi)容已經(jīng)具備的水平:
在學(xué)習完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
教學(xué)目標
(一)教學(xué)目標:
1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。
2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的`過程,認識有理
數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。
(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。
(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。
教學(xué)重點和難點
重點:能運用完全平方公式進行簡單的計算。
難點:會推導(dǎo)完全平方公式
教學(xué)過程
教學(xué)過程設(shè)計如下:
〈一〉、提出問題
[引入]同學(xué)們,前面我們學(xué)習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
?。?)原式的特點。
?。?)結(jié)果的項數(shù)特點。
(3)三項系數(shù)的特點(特別是符號的特點)。
(4)三項與原多項式中兩個單項式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習積極性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判斷:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、一現(xiàn)身手
① (x+y)2 =______________;② (-y-x)2 =_______________;
?、?(2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
?、?(0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[學(xué)生小結(jié)]
你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
〈五〉、探險之旅
(1)(-3a+2b)2=________________________________
?。?)(-7-2m) 2 =__________________________________
?。?)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
?。?)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
?。?)(2xy2-3x2y) 2=_______________________________
?。?)(2n3-3m3) 2=________________________________
板書設(shè)計
完全平方公式
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
八年級數(shù)學(xué)教案模板2
知識要點
1、函數(shù)的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,
相應(yīng)地就確定了一個y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。
2、一次函數(shù)的概念:若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當b=0 時,稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).
3、正比例函數(shù)y=kx的性質(zhì)
(1)、正比例函數(shù)y=kx的圖象都經(jīng)過
原點(0,0),(1,k)兩點的一條直線;
(2)、當k0時,圖象都經(jīng)過一、三象限;
當k0時,圖象都經(jīng)過二、四象限
(3)、當k0時,y隨x的增大而增大;
當k0時,y隨x的增大而減小。
4、一次函數(shù)y=kx+b的性質(zhì)
(1)、經(jīng)過特殊點:與x軸的交點坐標是 ,
與y軸的交點坐標是 .
(2)、當k0時,y隨x的增大而增大
當k0時,y隨x的增大而減小
(3)、k值相同,圖象是互相平行
(4)、b值相同,圖象相交于同一點(0,b)
(5)、影響圖象的兩個因素是k和b
①k的正負決定直線的方向
?、赽的正負決定y軸交點在原點上方或下方
5.五種類型一次函數(shù)解析式的確定
確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習的重要內(nèi)容。
(1)、根據(jù)直線的解析式和圖像上一個點的坐標,確定函數(shù)的解析式
例1、若函數(shù)y=3x+b經(jīng)過點(2,-6),求函數(shù)的解析式。
解:把點(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函數(shù)的解析式為:y=3x-12
(2)、根據(jù)直線經(jīng)過兩個點的坐標,確定函數(shù)的解析式
例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點B(2,7),
求函數(shù)的表達式。
解:把點A(3,4)、點B(2,7)代入y=kx+b,得
,解得:
函數(shù)的解析式為:y=-3x+13
(3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式
例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x
(小時)之間的關(guān)系.求油箱里所剩油y(升)與行駛時間x
(小時)之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。
(4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式
例4、如圖2,將直線 向上平移1個單位,得到一個一次
函數(shù)的圖像,那么這個一次函數(shù)的解析式是 .
解:直線 經(jīng)過點(0,0)、點(2,4),直線 向上平移1個單位
后,這兩點變?yōu)?0,1)、(2,5),設(shè)這個一次函數(shù)的解析式為 y=kx+b,
得 ,解得: ,函數(shù)的解析式為:y=2x+1
(5)、根據(jù)直線的對稱性,確定函數(shù)的解析式
例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對稱,求k、b的值。
例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對稱,求k、b的`值。
例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點對稱,求k、b的值。
經(jīng)典訓(xùn)練:
訓(xùn)練1:
1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。
(1)梯形的面積y與上底的長x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?
(2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。
訓(xùn)練2:
1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函數(shù)有___ __;正比例函數(shù)有____________(填序號).
2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )
A.k1 B.k-1 C.k1 D.k為任意實數(shù).
3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.
訓(xùn)練3:
1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.
2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點坐標是____,與y軸的交點坐標是____.
4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點,則k=_____;
若y隨x的增大而增大,則k__________.
5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )
訓(xùn)練4:
1、 正比例函數(shù)的圖象經(jīng)過點A(-3,5),寫出這正比例函數(shù)的解析式.
2、已知一次函數(shù)的圖象經(jīng)過點(2,1)和(-1,-3).求此一次函數(shù)的解析式 .
3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。
4、已知一次函數(shù)y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數(shù)的解析式。
5、已知y-1與x成正比例,且 x=-2時,y=-4.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當x=3時,求y的值.
一、填空題(每題2分,共26分)
1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .
2、若直線 和直線 的交點坐標為 ,則 .
3、一次函數(shù) 和 的圖象與 軸分別相交于 點和 點, 、 關(guān)于 軸對稱,則 .
4、已知 , 與 成正比例, 與 成反比例,當 時 , 時, ,則當 時, .
5、函數(shù) ,如果 ,那么 的取值范圍是 .
6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設(shè)長增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).
7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .
8、已知一次函數(shù) 和 的圖象交點的橫坐標為 ,則 ,一次函數(shù) 的圖象與兩坐標軸所圍成的三角形的面積為 ,則 .
9、已知一次函數(shù) 的圖象經(jīng)過點 ,且它與 軸的交點和直線 與 軸的交點關(guān)于 軸對稱,那么這個一次函數(shù)的解析式為 .
10、一次函數(shù) 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .
11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當 時, 是正比例函數(shù).
12、 為 時,直線 與直線 的交點在 軸上.
13、已知直線 與直線 的交點在第三象限內(nèi),則 的取值范圍是 .
二、選擇題(每題3分,共36分)
14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )
15、若直線 與 的交點在 軸上,那么 等于( )
A.4 B.-4 C. D.
16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )
17、直線 如圖5,則下列條件正確的是( )
18、直線 經(jīng)過點 , ,則必有( )
A.
19、如果 , ,則直線 不通過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是
A. B. C. D.都不對
21、如圖6,兩直線 和 在同一坐標系內(nèi)圖象的位置可能是( )
圖6
22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點B, ,則 的面積為( )
A.4 B.5 C.6 D.7
23、已知直線 與 軸的交點在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
24、已知 ,那么 的圖象一定不經(jīng)過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設(shè)甲從P處出發(fā) 小時,距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )
三、解答題(1~6題每題8分,7題10分,共58分)
26、如圖8,在直角坐標系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是 ,求這個一次函數(shù)解析式.
27、一次函數(shù) ,當 時,函數(shù)圖象有何特征?請通過不同的取值得出結(jié)論?
28、某油庫有一大型儲油罐,在開始的8分鐘內(nèi),只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進油管,只開出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.
(1)試分別寫出這一段時間內(nèi)油的儲油量Q(噸)與進出油的時間t(分)的函數(shù)關(guān)系式.
(2)在同一坐標系中,畫出這三個函數(shù)的圖象.
29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標準收費;超過部分按每度0.50元計費.
(1)設(shè)用電 度時,應(yīng)交電費 元,當 100和 100時,分別寫出 關(guān)于 的函數(shù)關(guān)系式.
(2)小王家第一季度交納電費情況如下:
月份 一月份 二月份 三月份 合計
交費金額 76元 63元 45元6角 184元6角
問小王家第一季度共用電多少度?
30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當 =0.65時, =0.8.
(1)求 與 之間的函數(shù)關(guān)系式;
(2)若每度電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]
31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?
32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)
路程/千米 運費(元/噸、千米)
甲庫 乙?guī)?甲庫 乙?guī)?/p>
A地 20 15 12 12
B地 25 20 10 8
(1)設(shè)甲庫運往A地水泥 噸,求總運費 (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫出它的圖象(草圖).
(2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?
八年級數(shù)學(xué)教案模板3
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。
[教學(xué)目標]
一、 知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實際問題
3學(xué)會簡單的合情推理與數(shù)學(xué)說理
二、 過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。
三、 情感與態(tài)度目標
通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習的能力。
四、 重點與難點
1、探索和證明勾股定理
2熟練運用勾股定理
[教學(xué)過程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的`兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習心得。
八年級數(shù)學(xué)教案模板3篇相關(guān)文章:
★ 有關(guān)兔子小學(xué)三年級作文300字4篇