下面是范文網(wǎng)小編分享的關(guān)于勾股定理說課稿5篇 勾股定理第一課時說課稿,供大家賞析。
關(guān)于勾股定理說課稿1
一、 教材分析
(一)教材地位
這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
?。ǘ┙虒W目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結(jié)合和從特殊到一般的思想。
情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。
?。ㄈ┙虒W重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學法分析:
學情分析:七年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的`意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結(jié)合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉(zhuǎn)化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、 教學過程設(shè)計
略
關(guān)于勾股定理說課稿2
一、教材分析
(一)、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。
?。ǘ⒔虒W目標
1、知識技能:1理解并會證明勾股定理的逆定理;
2會應用勾股定理的逆定理判定一個三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結(jié)合”方法的應用。
3、情感、態(tài)度價值觀 培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
?。ㄈ?、學情分析:
盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣就確定了本節(jié)課的重點、難點。 教學重點:勾股定理逆定理的應用
教學難點:勾股定理逆定理的證明
二、教學過程
本節(jié)課的設(shè)計原則是:使學生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結(jié)構(gòu)的目的。
?。ㄒ唬土暬仡?/p>
復習回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
?。ǘ﹦?chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)
造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。
?。ㄈW生在教師的指導下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)
因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設(shè)計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。
接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。
在同學們完成證明之后,同時讓學生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。
(四)組織變式訓練
本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運用以往知識的能力。例題講解后安排了三個練習,循序漸進,由淺入深。培養(yǎng)了學生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。讓學生知道勾股逆定理的用途,激發(fā)學生的學習興趣。我還采用講、說、練結(jié)合的'方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結(jié)合起來。
?。ㄎ澹w納小結(jié),納入知識體系
本節(jié)課小結(jié)先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并
告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。
?。┳鳂I(yè)布置
由于學生的思維素質(zhì)存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。第二題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質(zhì),發(fā)展學生的個性有積極作用。
三、說教法學法與教學手段
為貫徹實施素質(zhì)教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學內(nèi)容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調(diào)動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。
此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學生學習的積極性;力爭把教師教的過程轉(zhuǎn)化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。
關(guān)于勾股定理說課稿3
尊敬的各位領(lǐng)導、各位老師,大家好:
我叫李朝紅,是第十四中學的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標實驗版教科書數(shù)學八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學法、教學過程、教學反思四個方面進行闡述。
一、教材分析
1、教材的地位和作用:
在學習本節(jié)課之前學生已經(jīng)學習了勾股定理,全等三角形的判定等相關(guān)知識,為本節(jié)課的學習打好了基礎(chǔ),學習好本節(jié)課不但可以鞏固學生已有的知識,而且為后面利用勾股定理的逆定理判斷一個三角形是否直角三角形等相關(guān)知識的學習做好了鋪墊。
2、教學目標
教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關(guān)鍵。考慮到學生已有的認知結(jié)構(gòu)心理特征及本班學生的實際情況,我制定了如下教學目標
知識與技能:掌握勾股定理的逆定理,會用勾股定理的逆定理判斷一個三角形是否直角三角形。
過程與方法:通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成
過程,體會數(shù)形結(jié)合和由特殊到一般的數(shù)學思想,進一步提高學生分析問題、解決問題的能力。
情感、態(tài)度、價值觀:在探究勾股定理的逆定理的活動中,滲透與他人交流、合作的意識和探究精神.
3、重點難點
本著課程標準,在吃透教材的基礎(chǔ)上,我確立了如下的教學重、難點
重點:理解并掌握勾股定理的逆定理,并會應用。
難點:理解勾股定理的逆定理的推導。
二、教法學法分析
八年級學生的特點是思維比較活躍,喜歡發(fā)表自己的見解,善于進行小組合作學習,所以我將采用啟發(fā)教學與誘導教學相結(jié)合的方法,老師為主導,學生為主體,充分調(diào)動學生的學習積極性,讓學生動手操作,動腦思考,動口表達,積極參與到本節(jié)課的教學過程中來,在鍛煉學生思考、觀察、實踐能力的同時,使其科學文化修養(yǎng)與思想道德修養(yǎng)進一步提升。
教法學法分析完畢,我再來分析一下教學過程,這是我本次說課的重點。
三、教學過程分析:
?。ㄒ唬﹦?chuàng)設(shè)情景,引入新課
1、展示圖片:古埃及人制作直角的方法
2、讓學生試一試用一根繩子確定直角
設(shè)計意圖:通過古埃及人制作直角的方法,提出讓學生動手操作,進而使學生產(chǎn)生好奇心:“這樣就能確定直角嗎”,激發(fā)學生的求知欲,點燃其學習的激情,充分調(diào)動學生的學習積極性 ,同時也使學生感受到幾何來源于生活,服務于生活的道理,體會數(shù)學的價值。
?。ǘ﹦邮謾z測,提出假設(shè)
在本環(huán)節(jié)中通過情境中的問題,引導學生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm
上面三組線段為邊畫出三角形,猜測驗證出其形狀。
再引導啟發(fā)誘導學生從上面的活動中歸納思考:如果一個三角形的三邊a,b,c滿足a2+b2=c2,那這個三角形是直角三角形嗎?在整個過程的活動中,盡量給學生足夠的時間和空間,以平等身份參與到學生活動中來,對其實踐活動予以指導。讓學生通過作圖、測量等實踐活動,給出合理的假設(shè)與猜測。整個環(huán)節(jié)通過設(shè)置的問題串,引導學生動手、動腦、動口相結(jié)合,激活學生的思維,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度,合理的推測能力,嚴密的邏輯思維能力和靈活的動手實踐能力。
(三) 探索歸納,證明假設(shè):
勾股定理逆定理的證明與以往不同,需要構(gòu)造直角三角形才能完成,如何構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果直接將問題拋給學生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點,我先
1、 讓學生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現(xiàn)了什么情況?并請學生簡單說明理由。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,
2、 然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學生觀察它們之間有什么聯(lián)系呢?你們又是如何想的.?試說明理由。通過推理證明得出勾股定理的逆定理。
在這個過程中,首先讓學生從特殊的實例中動手操作到證明,學生自然地聯(lián)想到了全等三角形的判定,進而由特殊到一般發(fā)現(xiàn)三邊長為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關(guān)系。
設(shè)計意圖:讓學生從特殊的實例動手到證明,進而由特殊到一般,順利地利用構(gòu)建法證明了勾股定理的逆定理,整個過程自然、無神秘感,實現(xiàn)從直觀印象向抽象思維的轉(zhuǎn)化,同時學生親身體會了“操作——觀察——猜測——探索——論證”的過程,體驗了“特殊到一般,個性到共性”的偉大數(shù)學思想在實際中的應用。
這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。
?。ㄋ模W以致用、鞏固提升
本著由淺入深的原則,安排了三個題。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學生仿照課本上的例題,獨立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數(shù),我們稱為勾股數(shù)。第二題我改變題的形式,把一些符合a+b=c的三角形放入網(wǎng)格中讓學生運用勾股定理及其逆定理來說明理由。第三題是求一個不規(guī)則四邊形的面積,讓學生思考如何添加輔助線,把它分成一個直角三角形和一個非直角但能判定是直角的三角形,讓學生運用勾股定理及其逆定理證明并求解。
設(shè)計意圖:采用啟發(fā)教學與誘導教學方法相結(jié)合的方法分層練習,由淺入深地逐步提高學生解決實際問題的能力,達到鞏固知識,學以致用的目的
?。ㄎ澹┗仡櫩偨Y(jié),強化認知
課堂小結(jié)以填空體的形式檢測、歸納總結(jié)
設(shè)計意圖:讓學生以填空題的形式進行總結(jié),不僅能夠起到檢測的目的,而且?guī)椭鷮W生理清知識脈絡,起到重點強調(diào),產(chǎn)生高度重視的效果。
(六)作業(yè)布置
教材33頁練習
設(shè)計意圖:加強學生對勾股定理逆定理的理解,使學生的練習范圍拓展到多個題型。
教學反思:本節(jié)課以學生為主體、教師為主導,通過啟發(fā)與誘導,使學生動手操作、動腦思考、動口表達,讓學生在實踐與探究中發(fā)揮自我,充分調(diào)動了學生的自主性與積極性,整個過程注重了學生課上知識的形成與鞏固,以及學生各方面素質(zhì)的培養(yǎng)??傊竟?jié)課的知識目標基本達成,能力目標基本實現(xiàn),情感目標基本落實。
以上是我對本節(jié)課的理解,還望各位老師指正。
關(guān)于勾股定理說課稿4
(一)創(chuàng)設(shè)問題情境,引入新課:
在這一環(huán)節(jié)中,我設(shè)計了這樣一個情境,多媒體動畫展示,米老鼠來到了數(shù)學王國里的三角形城堡,要求只利用一根繩子,構(gòu)造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數(shù)同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調(diào)動學習內(nèi)容,激發(fā)求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質(zhì)。
(二)實踐猜想
本環(huán)節(jié)要圍繞以下幾個活動展開:
1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。
1a=3b=42a=5b=123a=2.5b=64a=6b=8
2、猜一猜,以下列線段長為三邊的三角形形狀
13cm4cm5cm25cm12cm13cm
32.5cm6cm6.5cm46cm8cm10cm
3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現(xiàn)。
4、用恰當?shù)恼Z言敘述你的結(jié)論
在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎(chǔ)上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發(fā)展區(qū),面向不同層次的每一名學生,每一名學生都有參與數(shù)學活動的機會,最后運用恰當?shù)恼Z言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關(guān)注;
1)學生的參與意識與動手能力。
2)是否清楚三角形三邊長度的`平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。
3)數(shù)形結(jié)合的思想方法及歸納能力。
(三)推理證明
八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數(shù)學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。
1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請簡要說明理由?
2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說明理由?
為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內(nèi)交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點。
關(guān)于勾股定理說課稿5
各位專家領(lǐng)導:
上午好!今天我說課的課題是《勾股定理》。
一、教材分析:
(一)本節(jié)內(nèi)容在全書和章節(jié)的地位。
這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。
(二)三維教學目標:
1、知識與能力目標。
?。?)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;
?。?)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
2、過程與方法目標。
在探索勾股定理的過程中,讓學生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
3、情感態(tài)度與價值觀。
通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。
(三)教學重點、難點:
1、教學重點:勾股定理的證明與運用
2、教學難點:用面積法等方法證明勾股定理
3、難點成因:
對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學結(jié)論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。
4、突破措施:
?。?)創(chuàng)設(shè)情景,激發(fā)思維:
創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;
?。?)自主探索,敢于猜想:
充分讓自己動手操作,大膽猜想數(shù)學問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;
?。?)張揚個性,展示風采:
實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的`有效性,也調(diào)動了學生的學習積極性。
二、教法與學法分析:
1、教法分析:
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神?;镜慕虒W程序是“創(chuàng)設(shè)情景-動手操作-歸納驗證-問題解決-課堂小結(jié)-布置作業(yè)”六個方面。
2、學法分析:
新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。
三、教學過程設(shè)計:
(一)創(chuàng)設(shè)情景:
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
問題的設(shè)計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉(zhuǎn)化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。
(二)動手操作:
1、課件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?
學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。
2、緊接著讓學生思考:
上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。
3、再問:
當邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設(shè)計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
(三)歸納驗證:
1、歸納:
通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。
2、驗證:
先后三次驗證“勾股定理”這一結(jié)論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。
(四)問題解決:
1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。
2、自學課本P101例1,然后完成P102練習。
(五)課堂小結(jié):
1、小組成員從內(nèi)容、數(shù)學思想方法、獲取知識的途徑進行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。
2、教師用多媒體介紹“勾股定理史話”。
?。?)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
?。?)康熙數(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。
3、目的:對學生進行愛國主義教育,激勵學生奮發(fā)向上。
(六)布置作業(yè):
課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。
以上內(nèi)容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導對本次說課提出寶貴的意見,謝謝!
關(guān)于勾股定理說課稿5篇 勾股定理第一課時說課稿相關(guān)文章: