下面是范文網(wǎng)小編整理的2020最全高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 高一數(shù)學(xué)中考知識(shí)點(diǎn)歸納2020,供大家參閱。
數(shù)學(xué)被很多學(xué)生認(rèn)為是一門很難的學(xué)科,高中數(shù)學(xué)更是如此,但是數(shù)學(xué)作為三大主課之一,所占的分量自是不清,很多學(xué)生也明白如果數(shù)學(xué)學(xué)不好的話想要考上理想的大學(xué)是天方夜譚,但是苦于無學(xué)習(xí)之法,那么高中數(shù)學(xué)都有哪些學(xué)習(xí)方法呢?下面就是小編給大家?guī)淼母咭粩?shù)學(xué)知識(shí)點(diǎn),希望能幫助到大家!
高一數(shù)學(xué)知識(shí)點(diǎn)1
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個(gè)集合是它本身的子集。AíA
?、谡孀蛹?如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
?、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
高一數(shù)學(xué)知識(shí)點(diǎn)2
1.多面體的結(jié)構(gòu)特征
(1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。
(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。
(3)棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
(1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.
(3)圓臺(tái)可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。
(4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。
3.空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。
三視圖的長度特征:“長對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法。
4.空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
(1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時(shí),把它們畫成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>
(2)畫幾何體的高
在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。
高一數(shù)學(xué)知識(shí)點(diǎn)3
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:XKb1.Com
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合{xÎR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合
(2)無限集含有無限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
?、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
【基本初等函數(shù)】
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應(yīng)用】
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
高一數(shù)學(xué)知識(shí)點(diǎn)4
1.知識(shí)網(wǎng)絡(luò)圖
復(fù)數(shù)知識(shí)點(diǎn)網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開方.有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì).
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.
高一數(shù)學(xué)知識(shí)點(diǎn)5
冪函數(shù)定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。
(6)顯然冪函數(shù)_。
2020最全高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 高一數(shù)學(xué)中考知識(shí)點(diǎn)歸納2020相關(guān)文章:
★ 開學(xué)的感想作文600字_高一開學(xué)感想作文五篇精選(開學(xué)感受作文初三)
★ 初中數(shù)學(xué)教學(xué)反思20篇(初中數(shù)學(xué)教學(xué)反思范文大全簡短)
★ 家鄉(xiāng)的改變作文高中五篇(高一作文家鄉(xiāng)的變化)
★ 蘇教版小學(xué)數(shù)學(xué)小升初真題模擬卷(三)(B卷)(小升初模擬試卷一數(shù)學(xué)人教版答案)
★ 六年級(jí)數(shù)學(xué)工作計(jì)劃7篇(六年級(jí)數(shù)學(xué)工作計(jì)劃第一學(xué)期)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇分享 數(shù)學(xué)高一知識(shí)點(diǎn)歸納筆記
★ 《買菜》中班教學(xué)反思共4篇 中班數(shù)學(xué)《買菜》教案反思
★ 小學(xué)數(shù)學(xué)老師工作總結(jié)大全2020(小學(xué)數(shù)學(xué)教師個(gè)人總結(jié)2020)
★ 下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃共4篇 中學(xué)數(shù)學(xué)教學(xué)計(jì)劃
相關(guān)熱詞搜索:高一 數(shù)學(xué) 數(shù)學(xué)知識(shí)點(diǎn)