下面是范文網(wǎng)小編整理的高二年級數(shù)學學科教學設計3篇(高二數(shù)學優(yōu)秀教學設計),以供參考。
高二年級數(shù)學學科教學設計1
[核心必知]
1.預習教材,問題導入
根據(jù)以下提綱,預習教材P2~P5,回答下列問題.
(1)對于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在數(shù)學中算法通常指什么?
提示:在數(shù)學中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.
2.歸納總結,核心必記
(1)算法的概念
12世紀的算法指的是用阿拉伯數(shù)字進行算術運算的過程續(xù)表
數(shù)學中的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟
現(xiàn)代算法通??梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題
(2)設計算法的目的
計算機解決任何問題都要依賴于算法.只有將解決問題的過程分解為若干個明確的步驟,即算法,并用計算機能夠接受的“語言”準確地描述出來,計算機才能夠解決問題.
[問題思考]
(1)求解某一個問題的算法是否是的?
提示:不是.
(2)任何問題都可以設計算法解決嗎?
提示:不一定.
高二年級數(shù)學學科教學設計2
1.預習教材,問題導入
根據(jù)以下提綱,預習教材P54~P57,回答下列問題.
(1)在教材P55的“探究”中,怎樣獲得樣本?
提示:將這批小包裝餅干放入一個不透明的袋子中,攪拌均勻,然后不放回地摸取.
(2)最常用的簡單隨機抽樣方法有哪些?
提示:抽簽法和隨機數(shù)法.
(3)你認為抽簽法有什么優(yōu)點和缺點?
提示:抽簽法的優(yōu)點是簡單易行,當總體中個體數(shù)不多時較為方便,缺點是當總體中個體數(shù)較多時不宜采用.
(4)用隨機數(shù)法讀數(shù)時可沿哪個方向讀取?
提示:可以沿向左、向右、向上、向下等方向讀數(shù).
2.歸納總結,核心必記
(1)簡單隨機抽樣:一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣.
(2)最常用的簡單隨機抽樣方法有兩種——抽簽法和隨機數(shù)法.
(3)一般地,抽簽法就是把總體中的N個個體分段,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本.
(4)隨機數(shù)法就是利用隨機數(shù)表、隨機數(shù)骰子或計算機產(chǎn)生的隨機數(shù)進行抽樣.
(5)簡單隨機抽樣有操作簡便易行的優(yōu)點,在總體個數(shù)不多的情況下是行之有效的.
[問題思考]
(1)在簡單隨機抽樣中,某一個個體被抽到的可能性與第幾次被抽到有關嗎?
提示:在簡單隨機抽樣中,總體中的每個個體在每次抽取時被抽到的可能性相同,與第幾次被抽到無關.
(2)抽簽法與隨機數(shù)法有什么異同點?
提示:
相同點①都屬于簡單隨機抽樣,并且要求被抽取樣本的
總體的個體數(shù)有限;
②都是從總體中逐個不放回地進行抽取
不同點①抽簽法比隨機數(shù)法操作簡單;
②隨機數(shù)法更適用于總體中個體數(shù)較多的時候,而抽簽法適用于總體中個體數(shù)較少的情況,所以當總體中的個體數(shù)較多時,應當選用隨機數(shù)法,可以節(jié)約大量的人力和制作號簽的成本
高二年級數(shù)學學科教學設計3
學習目標
1.回顧在平面直角坐標系中刻畫點的位置的方法.
2.能夠建立適當?shù)闹苯亲鴺讼?解決數(shù)學問題.
學習過程
一、學前準備
1、通過直角坐標系,平面上的與(),曲線與建立了聯(lián)系,實現(xiàn)了。
2、閱讀P3思考得出在直角坐標系中解決實際問題的過程是:
二、新課導學
◆探究新知(預習教材P1~P4,找出疑惑之處)
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標系?
問題3:(1).如何把平面內的點與有序實數(shù)對(x,y)建立聯(lián)系?(2).平面直角坐標系中點和有序實數(shù)對(x,y)是怎樣的關系?
問題4:如何研究曲線與方程間的關系?結合課本例子說明曲線與方程的關系?
問題5:如何刻畫一個幾何圖形的位置?
需要設定一個參照系
(1)、數(shù)軸它使直線上任一點P都可以由惟一的實數(shù)x確定
(2)、平面直角坐標系:在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定
(3)、空間直角坐標系:在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數(shù)對(x,y,z)確定
(4)、抽象概括:在平面直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:A.曲線C上的點坐標都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標的點都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問題6:如何建系?
根據(jù)幾何特點選擇適當?shù)闹苯亲鴺讼怠?/p>
(1)如果圖形有對稱中心,可以選對稱中心為坐標原點;
(2)如果圖形有對稱軸,可以選擇對稱軸為坐標軸;
(3)使圖形上的特殊點盡可能多的在坐標軸上。
高二年級數(shù)學學科教學設計3篇(高二數(shù)學優(yōu)秀教學設計)相關文章:
★ 學校六年級數(shù)學教案范文5篇(教學6年級數(shù)學教案)
★ 二年級數(shù)學下冊人教版新教案最新范文3篇 人教版二年級下冊數(shù)學教案
★ 小學五年級下冊數(shù)學總結3篇(五年級下冊數(shù)學確定位置的總結)
★ 人教版二年級下冊數(shù)學說課稿5篇(二年級數(shù)學下冊說課稿人教版簡單)
★ 一年級數(shù)學教案12篇 小學數(shù)學一年級數(shù)學教案
★ 最新蘇教版三年級數(shù)學上冊第六單元教案范文3篇(蘇教版三年級上冊數(shù)學第六單元測試)
★ 精選三年級數(shù)學教學工作總結模板5篇(年三年級數(shù)學教學工作總結)
★ 關于六年級數(shù)學教學計劃模板6篇(六年級數(shù)學教學總計劃)
★ 一年級下冊數(shù)學教學計劃5篇(小學數(shù)學一年級下冊教學計劃)