亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

初二數(shù)學(xué)函數(shù)教案3篇 初三函數(shù)教案

時(shí)間:2022-06-19 13:02:00 教案

  下面是范文網(wǎng)小編整理的初二數(shù)學(xué)函數(shù)教案3篇 初三函數(shù)教案,以供參考。

初二數(shù)學(xué)函數(shù)教案3篇 初三函數(shù)教案

初二數(shù)學(xué)函數(shù)教案1

  教學(xué)目標(biāo):

  1、 經(jīng)歷用數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

  2、 探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說(shuō)理和簡(jiǎn)單的推理的意識(shí)及能力。

  重點(diǎn)難點(diǎn):

  重點(diǎn):了解勾股定理的由來(lái),并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。

  難點(diǎn):勾股定理的發(fā)現(xiàn)

  教學(xué)過(guò)程

  一、 創(chuàng)設(shè)問(wèn)題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

  出示投影1 (章前的圖文 p1)教師道白:介紹我國(guó)古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國(guó)是最早了解勾股定理的國(guó)家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

  出示投影2 (書(shū)中的P2 圖1—2)并回答:

  1、 觀察圖1-2,正方形A中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。

  正方形B中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。

  正方形C中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。

  2、 你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問(wèn):

  3、 圖1—2中,A,B,C 之間的面積之間有什么關(guān)系?

  學(xué)生交流后形成共識(shí),教師板書(shū),A+B=C,接著提出圖1—1中的A.B,C 的關(guān)系呢?

  二、 做一做

  出示投影3(書(shū)中P3圖1—4)提問(wèn):

  1、圖1—3中,A,B,C 之間有什么關(guān)系?

  2、圖1—4中,A,B,C 之間有什么關(guān)系?

  3、 從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

  學(xué)生討論、交流形成共識(shí)后,教師總結(jié):

  以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

  三、 議一議

  1、 圖1—1、1—2、1—3、1—4中,你能用三角形的邊長(zhǎng)表示正方形的面積嗎?

  2、 你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間的關(guān)系嗎?

  在同學(xué)的交流基礎(chǔ)上,老師板書(shū):

  直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

  也就是說(shuō):如果直角三角形的兩直角邊為a,b,斜邊為c

  那么

  我國(guó)古代稱直角三角形的較短的直角邊為勾,較長(zhǎng)的為股,斜邊為弦,這就是勾股定理的由來(lái)。

  3、 分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度(學(xué)生測(cè)量后回答斜邊長(zhǎng)為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)

  四、 想一想

  這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長(zhǎng)嗎?只的是屏幕的款嗎?那他指什么呢?

  五、 鞏固練習(xí)

  1、 錯(cuò)例辨析:

△ABC的兩邊為3和4,求第三邊

  解:由于三角形的兩邊為3、4

  所以它的第三邊的c應(yīng)滿足 =25

  即:c=5

  辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題

△ ABC并未說(shuō)明它是否是直角三角形,所以用勾股定理就沒(méi)有依據(jù)。

(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足 ,題目中并為交待C 是斜邊

  綜上所述這個(gè)題目條件不足,第三邊無(wú)法求得。

  2、 練習(xí)P7 §1.1 1

  六、 作業(yè)

  課本P7 §1.1 2、3、4

初二數(shù)學(xué)函數(shù)教案2

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  能應(yīng)用所學(xué)的函數(shù)知識(shí)解決現(xiàn)實(shí)生活中的問(wèn)題,會(huì)建構(gòu)函數(shù)“模型”.

  2.過(guò)程與方法

  經(jīng)歷探索一次函數(shù)的應(yīng)用問(wèn)題,發(fā)展抽象思維.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)變量與對(duì)應(yīng)的思想,形成良好的函數(shù)觀點(diǎn),體會(huì)一次函數(shù)的應(yīng)用價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):一次函數(shù)的應(yīng)用.

  2.難點(diǎn):一次函數(shù)的應(yīng)用.

  3.關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維.

  教學(xué)方法

  采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用.

  教學(xué)過(guò)程

  一、范例點(diǎn)擊,應(yīng)用所學(xué)

【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫(xiě)出這段時(shí)間里她的跑步速度y(單位:米/分)隨跑步時(shí)間x(單位:分)變化的函數(shù)關(guān)系式,并畫(huà)出函數(shù)圖象.

  y=

【例6】A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng).從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?

  解:設(shè)總運(yùn)費(fèi)為y元,A城往運(yùn)C鄉(xiāng)的肥料量為x噸,則運(yùn)往D鄉(xiāng)的肥料量為(200-x)噸.B城運(yùn)往C、D鄉(xiāng)的肥料量分別為(240-x)噸與(60+x)噸.y與x的關(guān)系式為:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

  由圖象可看出:當(dāng)x=0時(shí),y有最小值10040,因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)200噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸,此時(shí)總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元.

  拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?

  二、隨堂練習(xí),鞏固深化

  課本P119練習(xí).

  三、課堂總結(jié),發(fā)展?jié)撃?/p>

  由學(xué)生自我評(píng)價(jià)本節(jié)課的表現(xiàn).

  四、布置作業(yè),專(zhuān)題突破

  課本P120習(xí)題14.2第9,10,11題.

  板書(shū)設(shè)計(jì)

  14.2.2一次函數(shù)(4)

  1、一次函數(shù)的應(yīng)用例:

初二數(shù)學(xué)函數(shù)教案3

  一、教學(xué)目標(biāo)

  1.了解二次根式的意義;

  2. 掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過(guò)二次根式性質(zhì) 和 的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點(diǎn):確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過(guò)程

(一)復(fù)習(xí)提問(wèn)

  1.什么叫平方根、算術(shù)平方根?

  2.說(shuō)出下列各式的意義,并計(jì)算

(二)引入新課

  新課:二次根式

  定義: 式子 叫做二次根式.

  對(duì)于 請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):

(1)式子 只有在條件a≥0時(shí)才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分.

(2) 是二次根式,而 ,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”.請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  例2 x是怎樣的實(shí)數(shù)時(shí),式子 在實(shí)數(shù)范圍有意義?

  解:略.

  說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子 有意義.

  例3 當(dāng)字母取何值時(shí),下列各式為二次根式:

(1) (2) (3) (4)

  分析:由二次根式的定義 ,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí), 是二次根式.

(2)-3x≥0,x≤0,即x≤0時(shí), 是二次根式.

(3) ,且x≠0,∴x>0,當(dāng)x>0時(shí), 是二次根式.

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.當(dāng)x>2時(shí), 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零.

  解:(1)由2a+3≥0,得 .

(2)由 ,得3a-1>0,解得 .

(3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).

(4)由-b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.

初二數(shù)學(xué)函數(shù)教案3篇 初三函數(shù)教案相關(guān)文章:

初中數(shù)學(xué)教案模板空白表格下載共3篇 教學(xué)設(shè)計(jì)模板空白表格

初中數(shù)學(xué)北師大教案3篇(北師大初中數(shù)學(xué)教案大全.doc)


相關(guān)熱詞搜索:初二數(shù)學(xué)教案   初中數(shù)學(xué)教案